Malware Payloads and
Countermeasures

CMSC 426 - Computer Security

System Damage

® Destruction of data on the system, prompted by a
“trigger”

e Example: ChernobylVirus (1998). Developed by
a Taiwanese student to “challenge” anti-virus
vendors.

® Ransomware - encrypt user’s data and require them
to pay to get the decryption key

® Example: CryptoLocker (2013). RSA-encrypts

selected files and demands payment with BitCoin.

Overview

System Corruption
Rootkits, zero-days, botnets
Privacy invasive software

Countermeasures

“Real World” Damage

e “Real World” destruction - use computer
control systems to damage physical devices

® Example: Stuxnet (2010). Sophisticated
worm that attacked Siemens
Programmable Logic Controllers (PLCs).
Believed to have targeted centrifuges of
the Iranian nuclear program.




Rootkits

A rootkit is stealthy malware designed to hide its

existence through modification of OS processes:

e Modification of process monitors to hide
rootkit processes

® Modification of file access routines to hide
file modifications

® Modifications to system logging

Very difficult to detect since the rootkit can
subvert software intended to identify it

Function Hooking

® Function hooking - intercepting and modifying
calls to system functions

® File and directory access - hide files
associated with the rootkit, hide
modifications to legitimate files

® Process listing - hide rootkit processes

® There are a number of tools for detecting
hooks

Kernel Mode Rootkit

...vs. User Mode (unprivileged)

Implemented as device driver (Win) or
Loadable Kernel Module (Linux).

Full system access allows for thorough
hiding

Challenging to write, and bugs can have
major impact on the system

DKOM

® Direct Kernel Object Modification (DKOM) on
Windows allows for modification of OS data
structures:

e Hide existence of processes (execution is thread-
based, not process-based)

® Manipulate tokens to add privileges, add groups,
fool event viewer

® Hide ports

® Similar capabilities exist for Linux




Example Rootkits Detecting Rootkits

® Brain boot-sector virus - intercepted file

read and re-directed to saved copy of valid
boot code Digital signatures for system libraries

Monitoring of hashes of system files

Sony BMG rootkit - intended to provide High- and low-level file system scans
copy protection; hid processes and
programs

AFX 2003 - Windows user-mode rootkit;
uses DLL injection

Detection of function hooks

Boot from trusted image and scan file
system

Zero-day Attack Botnets

Exploits a vulnerability that was previously ® A botnet is a collection of compromised computers,
unknown, even to developers of the target software centrally controlled by a bot herder

Detection difficult until signatures are developed ® Commonly used for criminal activities: spamming,
personal data theft, and distributed denial-of-service
® Heuristics - does the program have features (DDOS)

typical of an attack, e.g. instructions that “look

ca i : : :
il Infected machines communicate with C2 server for

updates and tasks
® Sandboxing - run programs in protected,

virtualized environment and monitor for
suspicious activity ® Use of unusual protocols and programs

® Frequent changes of C2 server address




Privacy Invasive SW

Adware - displays ads on the screen against the
user’s wishes

Keylogging - record keystrokes and forwards
logs to attacker

Screen capturing - just what it sounds like

Data harvesting - collection of specific files, user
information

Legitimate vs. malicious uses

Detection

Host-based scanners (e.g. McAffee)
® Simple signature-based scanners
® Heuristic scanners

® Activity Traps

® Full-featured protection (combinations of
above)

Countermeasures

® Detection - determine that an infection has
occurred.

® [ndentification - identify the malware that
has infected the system.

® Removal - remove all traces of the malware.

® Perimeter Scanning / Intrusion Detection

® [ngress monitoring - monitor incoming
traffic for suspicious activity (e.g. unused
destination IPs)

® Egress monitoring - monitor outgoing
traffic fro signs of data exfiltration,
scanning, or other suspicious activity.




Best Practices

® Diversity of systems and software
e Multiple systems, OSs, and applications
® Robustnesses of software

® Use software from major commercial vendors and
reputable Open Source only

® Keep software up-to-date
® Avoid freeware and shareware

® Avoid peer-to-peer file sharing

® Disable auto-execution from CD, USB drive, web pages, etc.

Malware Detection

® Perfect malware detection is unattainable
e “UltraWorm” proof (Exercise 6.2)
® Turing Machine proof

® Malware Arms Race

Detection developers
invent new signatures
and techniques

Malware circumvents
existing detection

More Best Practices

® Limit user privilege
® |mprove user authentication
e Enforce strong password rules

® Multi-factor authentication such as biometrics or smart
cards

® Network security and monitoring
® Block installation of known malware
® Block transmission of data to C2 servers

® Use malware detection and removal software

Next time: Intrusion Detection




