
Malware Payloads and
Countermeasures

CMSC 426 - Computer Security

Overview

• System Corruption

• Rootkits, zero-days, botnets

• Privacy invasive software

• Countermeasures

System Damage

• Destruction of data on the system, prompted by a
“trigger.”

• Example: Chernobyl Virus (1998). Developed by
a Taiwanese student to “challenge” anti-virus
vendors.

• Ransomware - encrypt user’s data and require them
to pay to get the decryption key

• Example: CryptoLocker (2013). RSA-encrypts
selected files and demands payment with BitCoin.

“Real World” Damage

• “Real World” destruction - use computer
control systems to damage physical devices

• Example: Stuxnet (2010). Sophisticated
worm that attacked Siemens
Programmable Logic Controllers (PLCs).
Believed to have targeted centrifuges of
the Iranian nuclear program.

Rootkits
A rootkit is stealthy malware designed to hide its
existence through modification of OS processes:

Very difficult to detect since the rootkit can
subvert software intended to identify it

• Modification of process monitors to hide
rootkit processes

• Modification of file access routines to hide
file modifications

• Modifications to system logging

Kernel Mode Rootkit

• ...vs. User Mode (unprivileged)

• Implemented as device driver (Win) or
Loadable Kernel Module (Linux).

• Full system access allows for thorough
hiding

• Challenging to write, and bugs can have
major impact on the system

Function Hooking

• Function hooking - intercepting and modifying
calls to system functions

• File and directory access - hide files
associated with the rootkit, hide
modifications to legitimate files

• Process listing - hide rootkit processes

• There are a number of tools for detecting
hooks

DKOM
• Direct Kernel Object Modification (DKOM) on

Windows allows for modification of OS data
structures:

• Hide existence of processes (execution is thread-
based, not process-based)

• Manipulate tokens to add privileges, add groups,
fool event viewer

• Hide ports

• Similar capabilities exist for Linux

Example Rootkits

• Brain boot-sector virus - intercepted file
read and re-directed to saved copy of valid
boot code

• Sony BMG rootkit - intended to provide
copy protection; hid processes and
programs

• AFX 2003 - Windows user-mode rootkit;
uses DLL injection

Detecting Rootkits

• Monitoring of hashes of system files

• Digital signatures for system libraries

• High- and low-level file system scans

• Detection of function hooks

• Boot from trusted image and scan file
system

Zero-day Attack

• Exploits a vulnerability that was previously
unknown, even to developers of the target software

• Detection difficult until signatures are developed

• Heuristics - does the program have features
typical of an attack, e.g. instructions that “look
malicious”

• Sandboxing - run programs in protected,
virtualized environment and monitor for
suspicious activity

Botnets
• A botnet is a collection of compromised computers,

centrally controlled by a bot herder

• Commonly used for criminal activities: spamming,
personal data theft, and distributed denial-of-service
(DDOS)

• Infected machines communicate with C2 server for
updates and tasks

• Frequent changes of C2 server address

• Use of unusual protocols and programs

Privacy Invasive SW

• Adware - displays ads on the screen against the
user’s wishes

• Keylogging - record keystrokes and forwards
logs to attacker

• Screen capturing - just what it sounds like

• Data harvesting - collection of specific files, user
information

• Legitimate vs. malicious uses

Countermeasures

• Detection - determine that an infection has
occurred.

• Indentification - identify the malware that
has infected the system.

• Removal - remove all traces of the malware.

Detection

• Host-based scanners (e.g. McAffee)

• Simple signature-based scanners

• Heuristic scanners

• Activity Traps

• Full-featured protection (combinations of
above)

• Perimeter Scanning / Intrusion Detection

• Ingress monitoring - monitor incoming
traffic for suspicious activity (e.g. unused
destination IPs)

• Egress monitoring - monitor outgoing
traffic fro signs of data exfiltration,
scanning, or other suspicious activity.

Best Practices
• Diversity of systems and software

• Multiple systems, OSs, and applications

• Robustnesses of software

• Use software from major commercial vendors and
reputable Open Source only

• Keep software up-to-date

• Avoid freeware and shareware

• Avoid peer-to-peer file sharing

• Disable auto-execution from CD, USB drive, web pages, etc.

More Best Practices
• Limit user privilege

• Improve user authentication

• Enforce strong password rules

• Multi-factor authentication such as biometrics or smart
cards

• Network security and monitoring

• Block installation of known malware

• Block transmission of data to C2 servers

• Use malware detection and removal software

Malware Detection

• Perfect malware detection is unattainable

• “UltraWorm” proof (Exercise 6.2)

• Turing Machine proof

• Malware Arms Race

Malware circumvents
existing detection

Detection developers
invent new signatures

and techniques

Next time: Intrusion Detection

