
Stack-Based Buffer
Overflow

IT430 - Information Assurance
7 April 2014

Outline

• How the stack works

• Simple stack buffer overflow

• Stack smashing

• Prevention

The Stack

• Grows downward

• Organized in frames -
each frame is associated
with an active procedure
call

• Frame includes return
address and storage for
parameters and local
variables

Previous Frames

Return Address

Buffer

Program Code

int my_func(int x, int y, char* name)

{
 int xx, yy, zz;

 float ans;
}
main()

{
 char name[6] = "chris";

 my_func(1, 2, name);
}

Stack Example

x in EDI, y in ESI, *name in RDX

_my_func:
 pushq %rbp
 movq %rsp, %rbp
 movl %edi, -4(%rbp)
 movl %esi, -8(%rbp)
 movq %rdx, -16(%rbp)
 movl -20(%rbp), %eax
 popq %rbp
 ret

Stack Example

Return Address
(instruction after call in main)

Pointer to start of main’s
frame

Contents of EDI (x)

Contents of ESI (y)

Contents of RDX (*name)

Return value (undefined)

What will go wrong?
#include <string.h>

int my_func(char *name)

{

 char lname[10];

 strcpy(lname, name);

 return(0);

}

main()

{

 char name[50] = "franklin delano roosevelt";

 my_func(name);

}

_my_func:
 pushq %rbp
 movq %rsp, %rbp
 subq $48, %rsp
 movq %rdi, -8(%rbp)
 leaq -34(%rbp), %rax
 movq -8(%rbp), %rcx
 movabsq $10, %rdx
 movq %rax, %rdi
 movq %rcx, %rsi
 callq ___strcpy_chk
 ...code omitted...
 ret

The Assembly

Return Address
(instruction after call in main)

Pointer to start of main’s
frame

Contents of RDI (*name)

Space for lname[10] Fr
an

kl
in

 D
el

an
o

R
oo

se
ve

lt

Stack Smashing

• Use the buffer overflow to change
execution flow

• Clever construction of overflow to replace
return address with address of malicious
code

• When function returns, will jump to
malicious code

Challenges (to attacker)

• Knowing where the return address is relative
to the buffer

• Not so bad if you have source code and
know the architecture of the target

• Knowing what to replace return address with

• Can’t just put malicious code anywhere

• Try to keep code in the stack

NOP Sledding

• Deals with ambiguity in address of
malicious code

• Precede code with a bunch of no-ops
(NOPs)

• If overwritten return address points to a
location within the NOP block, execution
will eventually reach the malicious code

NOP Sledding Picture

Return Address
(instruction after call in main)

Pointer to start of main’s
frame

Other local variables or
parameters

Buffer

Padding

Best guess for address

NOP Sled

Malicious Code

Trampolining

• Use known location of a standard library to
provide a target destination for attack

• For example, DLL known to include a jump
to the address in ESP

• Get address of malicious code in ESP

• Overwrite return address with address
of jmp esp in DLL

Return-to-libc

• Similar to trampolining; use known location
in memory of C standard library (libc)

• Cause execution to jump to useful library
function: system(), execv(), etc.

Shellcode

• Buffer overflow may allow for execution of
arbitrary code

• Attacker would like to open shell with elevated
privileges

• Shellcode is carefully crafted, malicious machine
language code that is executed via the buffer
overflow attack

• Shellcode is highly constrained; writing shellcode is
challenging

Shellcode Constraints

• No null bytes - shellcode must survive string
processing; nulls indicate end of string

• Small code - shellcode may have to fit into
small portion of the stack

• Consider a small example...

Opening a Shell

• Call execve() with the following arguments

• path - “/bin/sh\0”

• argv - [“/bin/sh\0”, 0x00]

• envp - [0x00]

• In assembly, call execve() using interrupt
0x80. Here’s one way to do it...

BITS 32

section .text
 global _start

_start:

cont: xor eax, eax ; zero contents of eax
 push eax ; null terminator for "/bin//sh"
 push "hs//" ; push "/bin//sh" on stack
 push "nib/" ; has to be byte reversed
 mov ebx, esp ; save address of "/bin//sh" to ebx
 push eax ; write args[1] / null envp on stack
 mov edx, esp ; save address of envp in edx
 push ebx ; write args[0] on stack
 mov ecx, esp ; save args in ecx
 mov al, 0xb ; copy execve syscall number to %al
 int 0x80 ; execute the system call

• This assembles to:

00000000 31 c0 50 68 68 73 2f 2f 68 6e 69 62 2f 89 e3 50
00000010 89 e2 53 89 e1 b0 0b cd 80

• Notice that we had to push “/bin//sh” with
bytes reversed - that’s because the push
statement reverses bytes of its argument

• The extra “/” has no effect

• No null bytes!

Putting it Together

• A successful attack combines multiple
techniques

• Overwrite return address to control
execution flow

• NOP sled to compensate for ambiguity in
memory layout

• Shellcode gives attacker access to system

• We will see an example in Friday’s Lab

