Outline

Stack-Based Buffer
Ove r'ﬂOW How the stack works

IT430 - Information Assurance Simple stack buffer overflow

7 April 2014 Stack smashing

Prevention

The Stack Stack Example

Hipitsm iy SRRl (EinEexs haine v clliaiedeaname
Grows downward Vil (, Y)
Previous Frames {

Organized in frames - int xx, yy, 2z;

each frame is associated
with an active procedure

call Buffer

il @i cinisH
Return Address e

Frame includes return char name[6] = "chris";
address and storage for my func(l, 2, name);
parameters and local
variables

Program Code

Stack Example

x in EDI, y in ESI, *name in RDX

|y EUha@]

Ptighe] Hiloe

julelvde|
movl
mov1l
movq

movl
porg

Return Address
(instruction after call in main)

Pointer to start of main’s

frame
SESD, DLioY

sedil, =4 (5rbp) Contents of EDI (x)
%esi, -8 (%rbp) il
sicebx, —1E (HiEloe)

—20 (5iEe) |, HEebx

Contents of ESI (y)

Contents of RDX (*name)

srbp

What will go wrong?

#include <string.h>

int my func(char *name)

{

char lname[10];
strcpy (lname, name);

return (0) ;

char name[50] = "franklin delano roosevelt";

my_func (name) ;

Fei Return value (undefined)

The Assembly

LMy EUn e

Stack Smashing

pushg $rbp Return Address
° . \ (instruction after call in main
MOWE] BESD, WIEY |
subg $48, S%rsp Pointer to start of main’s

moyer Shdi & — 8l rop) ~* fiae
leag -34(%rbp), S%rax Contents of RDI (*name)
meyva =8 (EEbp) | & ness

movabsqg $10, %rdx
MOWIG] wieeb, wiehl
MEWE] b, wirgal
catlilieiil | si=recpivichilks

4 cedc emiltlicds
=T

® Use the buffer overflow to change
execution flow

® Clever construction of overflow to replace
return address with address of malicious
code

Franklin Delano Roosevelt

Space for Iname[10]

® When function returns, will jump to
malicious code

Challenges (to attacker)

® Knowing where the return address is relative
to the buffer

® Not so bad if you have source code and
know the architecture of the target

® Knowing what to replace return address with
® Can’t just put malicious code anywhere

® Try to keep code in the stack

NOP Sledding Picture

Malicious Code

NOP Sled

Return Address

: i ; ; Best guess for address
(instruction after call in main) g

Pointer to start of main’s
frame

Other local variables or

parameters
Padding

Buffer

NOP Sledding

® Deals with ambiguity in address of
malicious code

® Precede code with a bunch of no-ops
(NOPs)

® [f overwritten return address points to a
location within the NOP block, execution
will eventually reach the malicious code

Trampolining

® Use known location of a standard library to
provide a target destination for attack

® For example, DLL known to include a jump
to the address in ESP

o Get address of malicious code in ESP

® Overwrite return address with address
of jmp esp in DLL

Return-to-libc

® Similar to trampolining; use known location
in memory of C standard library (libc)

® Cause execution to jump to useful library
function: system (), execv (), etc.

Shellcode Constraints

® No null bytes - shellcode must survive string
processing; nulls indicate end of string

® Small code - shellcode may have to fit into
small portion of the stack

e Consider a small example...

Shellcode

Buffer overflow may allow for execution of
arbitrary code

Attacker would like to open shell with elevated
privileges

Shellcode is carefully crafted, malicious machine
language code that is executed via the buffer
overflow attack

Shellcode is highly constrained; writing shellcode is
challenging

Opening a Shell

Call execve() with the following arguments
® path- b /bin fsh\ 0L

& arovel it toiinydeh 0l i02:0.0.]

® envp - [0x00]

In assembly, call execve() using interrupt
0x80. Here’s one way to do it...

BIETSE 32 A
® This assembles to:

section

00000000 3 Y 69 668 TS Zw 27 66 G2 BY &2 Zd §Y
00000010 . 89 2 89 el b0 0L od 80

i) Clomiiciealics (OhE EEbY

ponnll o derminator for Nibie//ah

push "hs//" ; push "/bin//sh" on stack ® Notice that we had to push “/bin//sh” with
PUshEn oA g has to be byte reversed .

mov ebx, esp ; save address of "/bin//sh" to ebx bytes reversed - that’s because the push
push eax A wnidites argsiilil /4 nnilill envp on stack i

mov edx, esp ; save address of envp in edx statement reverses bytes Of Its argument
push ebx fhaiite aRgsii0l] ont sitack

mov ecx, esp ; save args in ecx

mov al, 0xb ; copy execve syscall number to %al ® The extra“/” ha.S no effect

fimits (056810 ; execute the system call

e No null bytes!

Putting it Together

® A successful attack combines multiple
techniques

® Overwrite return address to control
execution flow

® NOP sled to compensate for ambiguity in
memory layout

® Shellcode gives attacker access to system

® We will see an example in Friday’s Lab

