
Random Number
Generation

CMSC 426 - Computer Security

1

Outline

• Properties of PRNGs

• LCGs

• NIST SP 800-90A

• Blum, Blum, Shub

2

Random Number Uses

• Generation of symmetric keys

• Generation of primes (p and q) for RSA

• Generation of secret keys for Diffie-Hellman

• Nonces for cryptographic protocols

3

The “P” in “PRNG”
• Don’t typically have access to a true random number

generator (RNG).

• RNGs require some source of random noise, i.e.
special hardware.

• Instead, use an algorithm that produces numbers that
appear random - a Pseudo-Random Number
Generator or PRNG.

• NIST documents also refer to a PRNG as a
Deterministic Random Bit Generator (DRBG).

4
CMSC 426 - RNG and PRNG - SP2018.key - March 14, 2018

PRNG Requirements
• Statistical Properties. What does it mean to “appear

random?”

• Output of the PRNG should be uniformly
distributed.

• Outputs should appear independent. Can not
infer a value from a previous or future value.

• Unpredictability. For cryptography, the statistics don’t
matter so much as that the values be unpredictable.

5

A simple PRNG
• The Linear Congruential Generator (LCG) is

perhaps the most commonly used PRNG.

• Given constants a, c, and m and an initial seed
X0, generate numbers according to the formula

Xn+1 = (a Xn + c) mod m
• The selection of the constants is important.

6

LCG Examples

• Example: a = c = 1.

• Example: a = 7, c = 0, m = 32, X0 = 1.

• Example: a = 5, c = 0, m = 32, X0 = 1.

7

Good LCGs?
• What would make an LCG good?

1. Full-period generating — generates all
values 0 < X < m.

2. Should appear random as determined by a
battery of statistical tests.

3. Efficient on current architectures (64 bit).

8
CMSC 426 - RNG and PRNG - SP2018.key - March 14, 2018

LCG Parameters
• If n is a power of two, choose a, c such that

1. c is relatively prime to n (so c is odd).
2. a - 1 is divisible by 4.

Hull & Dobell, Random Number Generators, SIAM Review, Vol. 4, No. 3 (July
1962), pp. 230 - 254.

• Some examples from Wikipedia:
n a c

glibc 231 1103515245 12345
MS Quick C 232 214013 2531011

9

LCGs are Weak
• Unfortunately, LCGs are not appropriate for

cryptography.

• Example: n = 256, a = 3, c = 7. We can recover
the values n, a, and c just by observing Xi.

• Python uses a PRNG called a Mersenne Twister,
which is better than an LCG, but still not good
enough for cryptography.

10

NIST SP 800-90A
• PRNG based on AES in CTR mode which is

suitable for cryptographic applications.

• Note: NIST uses the term Deterministic Random
Bit Generator (DRBG) rather than PRNG.

• The algorithm consists of separate Initialization
and Generation phases.

• We’ll see a simplified version of the standard
using AES-128…

11

Initialization
• The following steps initialize the PRNG:

1. Obtain 256 bits of random "seed" data; the first 128 bits
will be denoted (K0), and the remaining 128 bits will be
denoted (V0).

2. Initialize V and K to zero.
3. Update V ← V + 1 mod 2128.
4. Encrypt V with key K; save the output K'.
5. Update V ← V + 1 mod 2128.
6. Encrypt V with key K; save the output V'.
7. Set K = K0 ⊕ K' andV =V0 ⊕V'.

12
CMSC 426 - RNG and PRNG - SP2018.key - March 14, 2018

Generation
• Generation of n blocks of pseudo-random data:

1. Update V ← V + 1 mod 2128. 
Encrypt V with key K; save output as X.

2. Update Output ← Concatenate(Output, X).
3. Repeat steps 1 - 3 a total of n times.
4. Return Output.

• After generation, V and K are updated using steps 3 - 7 of
the Initialization.

• A counter tracks the total number of pseudo-random bits
produced; after some threshold, the PRNG must be re-
initialized.

13

Testing
• SP 800-90A states that known answer testing

“shall” be performed for various sub-functions in
implementations of the PRNG.

• Known answer testing is just running the algorithm
with inputs and outputs specified in the standard.

• Implementation requires patience, attention to
detail, and extensive testing — it is preferable to
use an existing, validated implementation than to
write your own.

14

Blum, Blum, Shub
• We’ve seen a simple PRNG that isn’t suitable for

cryptography (LCG) and a complicated
generator that is (SP 800-90A).

• The Blum, Blum, Shub (BBS) generator is simple
and secure — but has its own limitations.

• BBS is provably secure if used correctly; its
security is based on the difficulty of factoring.

15

BBS Parameters
• Construct a composite modulus M = p⋅q with

the following properties:

• p and q are primes of “cryptographic size” (at
least 512 bits each)

• p and q are both congruent to 3 mod 4.

• Generate a seed x0, a random positive integer
less than M and relatively prime to M.

16
CMSC 426 - RNG and PRNG - SP2018.key - March 14, 2018

BBS Generation
• The state of the generator is updated according

to the rule:

xi+1 = xi2 mod M.

• From each xi, extract the low-order bit. That is,
the pseudo-random sequence is:

bi = xi mod 2, i = 1, 2, 3, …

• Example: p = 7, q = 11, x0 = 17.

17

Security and Efficiency
• Given a sequence of bi values, it is “difficult” to

recover a state xj (future or past).

• The difficulty is proven to be equivalent to a hard
mathematical problem, which is in turn is
believed to be equivalent to factoring M.

• So what is the downside? Efficiency. We are
computing one modular exponentiation for each
bit of pseudo-random output.

18

Which PRNG to use?
• For non-cryptographic applications, such as

simulations, an LCG is usually sufficient.

• For large volumes of pseudo-random bits, a
PRNG from SP 800-90A will be secure and
efficient.

• For small volumes of critical pseudo-random bits,
BBS would be a reasonable choice.

There are many other PRNGS: this is just a sample!

19

Next time: Cryptography Lab

20
CMSC 426 - RNG and PRNG - SP2018.key - March 14, 2018

