Outline

Diffie-Hellman

CMSC 426 - Computer Security

- Key Exchange
- The discrete logarithm problem
- Diffie-Hellman
- Man in the Middle
- Elliptic Curve Cryptography

2

Discrete Logarithms

- The security of the Diffie-Hellman algorithm is based on the discrete logarithm problem.
- Let p be a prime number
- An integer $a, 0<a<p$, is a primitive root $\bmod \mathbf{p}$ if the powers of a mod p are distinct and consist of all the numbers from 1 to $p-1$.
- Given $b, 0<b<p$, there is a number x such that $b=a^{x}$ $\bmod p$.
- The number x is the discrete logarithm of b base a mod p.

Dlog Example

- Find the discrete logarithm of 17 base 3 mod 29

$$
\begin{aligned}
(p=29 & , a=3, b=17) \\
& \ggg=1 \\
& \gg \text { while pow }(3, x, 29) \quad!=17: \\
& \cdots \quad x=x+1 \\
& \cdots \\
& \gg \\
& 21 \\
& \ggg \operatorname{pow}(3,21,29) \\
& 17
\end{aligned}
$$

- What happens if a is not primitive? The discrete log of b may not exist.
- For large primes p finding the discrete logarithm of a number is infeasible.

5

Diffie-Hellman

Alice

Send Y_{A}
Compute $K_{A}=Y_{B} X_{A}$
$K_{A}=K_{B}$
:---:
Compute
$K_{B}=Y_{A} X_{B}$
Send Y_{B}

Alice and Bob have a
shared secret key!

- Use the same values as in the previous example ($p=29, a=3, b=17$).
- Alice's private value $\left(X_{A}\right)$ is 12 .
- Bob's private value $\left(X_{B}\right)$ is 5 .

Example

```
>>> Xa= 12
>>> Xb=5
>>> Ya=pow(3, Xa, 29)
>>> Yb = pow(3, Xb, 29)
>>> # Alice receives Yb and computes Ka
>>> Ka= pow(Yb, Xa, 29)
>>> Ka
23
>>> # Bob receives Ya and computes Kb
>>> Kb = pow(Ya, Xb, 29)
>>> Kb
```


"Real" DH

- In reality, DH is a bit more complicated.
- Large prime p (at least 1024 bits); a generates a subgroup of prime order q (at least 160 bits):

```
            a0}\operatorname{mod}
            a1 mod p
            aq-1 mod p
aqmod}p=\mp@subsup{a}{}{0}\operatorname{mod}
```


Man in the Middle

- Unfortunately, the protocol as described is susceptible to a man-in-the-middle attack (MitM).
- Eve can pretend to be Bob to Alice and pretend to be Alice to Bob - all communication flows through Eve!
- Certificates can fix this problem. The CA would sign the public values (e.g. Y_{A} and Y_{B}).
- There are other DH-based protocols to prevent MitM.

10

Elliptic Curves

- Solutions (x, y) to equations of the form

$$
\mathrm{E}: y^{2}=x^{3}+a x+b
$$

- For cryptography, x and y are integers mod p.
- The addition rule can be derived geometrically.

Addition

- Given points $\mathrm{P}=\left(\mathrm{x}_{\mathrm{P}}, \mathrm{y}_{\mathrm{P}}\right)$ and $\mathrm{Q}=\left(\mathrm{x}_{\mathrm{Q}}, \mathrm{y}_{\mathrm{Q}}\right)$
- $-\mathrm{P}=\left(\mathrm{x}_{\mathrm{P}},-\mathrm{y}_{\mathrm{P}}\right)$
- Sum $P+Q=R=\left(x_{R}, y_{R}\right)$ is given by
- $x_{R}=s^{2}-x_{P}-x_{Q}$
- $y_{R}=s\left(x_{P}-x_{R}\right)-y_{P}$
- Where $s=\left(y_{P}-y_{Q}\right) /\left(x_{P}-x_{Q}\right)$

Rational Points

- $E\left(F_{p}\right)-F_{p}$ rational points; P with x and y in F_{p}
- | $E\left(F_{p}\right) \mid$ is finite; cryptographic subgroup?
- Especially interested in p a NIST prime.
- Generalized Mersenne primes
- E.g. $\mathrm{p}=2^{384}-2^{128}-2^{26}+2^{32}-\mathrm{I}$
- [m] P = P + P + + + P (m-fold sum)

13

EC Diffie-Hellman

- Alice and Bob agree on an elliptic curve $E\left(F_{p}\right)$ and a group generator G of order q
- Alice's public and private values
- Private random value ma
- Public $P_{A}=\left[m_{A}\right] G$, a point on the curve
- Bob's values: private m_{B}, public $\mathrm{P}_{\mathrm{B}}=\left[\mathrm{m}_{\mathrm{B}}\right] \mathrm{G}$

EC Diffie-Hellman

Alice
$m_{A}, P_{A}=\left[m_{A}\right] G$
14

ECC vs. Classical DH

Classical DH	ECC DH
System parameters	System parameters $G, E\left(F_{p}\right)$
Fundamental Operation Exponentiation mod p	Fundamental Operation a^{\times}mod p
PC Point Addition	
Parameter Sizes P	
q at least 160 bits	
p at least 1024 bits	Parameter Sizes
	q at least 160 bits

- ECC gives comparable security for much smaller parameter sizes.
- There are other ECC algorithms besides ECC DH, but we won't go into those.

