Diffie-Hellman

CMSC 426 - Computer Security

Outline

- Key Exchange
- The discrete logarithm problem
- Diffie-Hellman
- Man in the Middle
- Elliptic Curve Cryptography

Key Exchange with RSA

1

- Alice and Bob want to share a secret key for use with a symmetric algorithm such as AES.
- It is more efficient to encrypt data with AES and encrypt the key with RSA.

Discrete Logarithms

2

- The security of the Diffie-Hellman algorithm is based on the discrete logarithm problem.
 - Let *p* be a prime number
 - An integer *a*, 0 < *a* < *p*, is a **primitive root mod p** if the powers of *a* mod *p* are distinct and consist of all the numbers from 1 to *p* 1.
 - Given b, 0 < b < p, there is a number x such that $b = a^x \mod p$.
 - The number x is the discrete logarithm of b base a mod p.

4

Dlog Example

• Find the discrete logarithm of 17 base 3 mod 29 (p = 29, a = 3, b = 17)

```
>>> x = 1
>>> while pow(3,x,29) != 17:
        x = x + 1
>>> X
21
>>> pow(3,21,29)
17
```

- What happens if a is not primitive? The discrete log of *b* may not exist.
- For large primes *p* finding the discrete logarithm of a number is infeasible.

6

Example

5

Diffie-Hellman

System	Parameters	Alice	
q	a large prime	AIICE	
α	primitive root mod q	Send Y _A	
Alice's	Parameters		
X _A	Random secret 0 < X _A < <i>q</i>	$Compute$ $K_A = Y_B^{X_A}$	
Y _A	$a^{\chi_{\mathcal{A}}} \mod q$	$K_A =$	
Bob's F	Parameters		
	Random secret 0 < X _B < <i>q</i>	Alice and Bo shared secre	
	\mathfrak{a}^{χ_B} mod q		

Alice		Bob	
Send Y_A		Compute $K_B = Y_A X_B$	
$\begin{array}{l} \text{Compute} \\ K_A = Y_B^{\chi_A} \end{array}$		Send Y_B	
	$K_A = K_B$		
Alice and Bob have a			
shared secret key!			

- Alice's private value (X_A) is 12.
- Bob's private value (X_B) is 5.

>>> Xa = 12 >>> Xb = 5 >>> Ya = pow(3, Xa, 29) >>> Yb = pow(3, Xb, 29)>>> # Alice receives Yb and computes Ka >>> Ka = pow(Yb, Xa, 29) >>> Ka

>>> # Bob receives Ya and computes Kb

>> Kb = pow(Ya, Xb, 29)>>> Kb

"Real" DH

- In reality, DH is a bit more complicated.
- Large prime *p* (at least 1024 bits); α generates a subgroup of prime order *q* (at least 160 bits):

Man in the Middle

- Unfortunately, the protocol as described is susceptible to a man-in-the-middle attack (MitM).
- Eve can pretend to be Bob to Alice *and* pretend to be Alice to Bob all communication flows through Eve!
- Certificates can fix this problem. The CA would sign the public values (e.g. Y_A and Y_B).
- There are other DH-based protocols to prevent MitM.

10

9

Elliptic Curve Cryptography

- Elliptic curves are a complex mathematical object that can be used in place of mod *p* arithmetic.
- What that means is that elliptic curves provide us with a finite collection of numbers which we know how to add and for which addition acts as we would expect.
- **Notation:** *F*_{*p*} denotes the set of integers mod *p* along with addition and multiplication.

Elliptic Curves

12

• Solutions (x, y) to equations of the form

 $E: y^2 = x^3 + ax + b$

- For cryptography, x and y are integers mod p.
- The addition rule can be derived geometrically.

Addition

- Given points $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$
 - $-\mathbf{P} = (x_{\mathbf{P}}, -y_{\mathbf{P}})$
- Sum P + Q = R = (x_R, y_R) is given by
 - $x_{\rm R} = s^2 x_{\rm P} x_{\rm Q}$
 - $y_{\rm R} = s (x_{\rm P} x_{\rm R}) y_{\rm P}$
- Where $s = (y_P y_Q) / (x_P x_Q)$

Rational Points

- $E(\mathbf{F}_p)$ \mathbf{F}_p rational points; P with x and y in \mathbf{F}_p
 - | E(**F**_p)| is finite; cryptographic subgroup?
- Especially interested in *p* a NIST prime.
 - Generalized Mersenne primes
 - E.g. $p = 2^{384} 2^{128} 2^{96} + 2^{32} 1$
- [m] P = P + P + ... + P (m-fold sum)

13

EC Diffie-Hellman

- Alice and Bob agree on an elliptic curve E(F_p) and a group generator G of order q
- Alice's public and private values
 - Private random value *m*_A
 - Public $P_A = [m_A]G$, a point on the curve
- Bob's values: private m_{B} , public $P_{B} = [m_{B}]G$

16

ECC vs. Classical DH

Classical DH	ECC DH
System parameters α, <i>q</i>	System parameters $G, E(F_p)$
Fundamental Operation	Fundamental Operation
Exponentiation mod <i>p</i>	EC Point Addition
α ^x mod <i>p</i>	[<i>m</i>] <i>P</i>
Parameter Sizes	Parameter Sizes
<i>q</i> at least 160 bits	<i>q</i> at least 160 bits
<i>p</i> at least 1024 bits	<i>p</i> about the same size as <i>q</i>

17

Next time: Pseudo-Random Number Generation

- ECC gives comparable security for much smaller parameter sizes.
- There are other ECC algorithms besides ECC DH, but we won't go into those.

18