
CMSC 426/626 - Fall 2014 Project 2 Page �1

Project 2: Applied Cryptography
CMSC 426/626 — Fall 2014

Summary
Gru and Dr. Nefario need a better encryption program. As Gru’s favorite minion, you’ve
been tasked to develop the new software. The systems is to use AES to encrypt the
data and RSA to protect the AES keys. You will need to write one program to generate
RSA keys, and a second that uses the RSA keys to perform the actual encryption or
decryption of messages.

Project Details
To complete the project, you will need to write two Python programs:
genkeys.py — generate RSA public and private keys.

a. The program takes a single command line argument, the name of the user for
which keys are being generated (referred to as name in the following). For test
purposes, use the user names gru and drn.

b. The program must be runnable directly from the command shell, 
 e.g. ./genkeys.py gru

c. The program must randomly generate an RSA public / private key pair using
code that you write (you cannot import RSA code from another module such as
PyCrypto). It must use random.SystemRandom or os.urandom() as the
source of pseudo-random bytes. The keys must be of cryptographic size.

d. The program must produce two output files, one containing the RSA private key
(name.prv) and the other containing the RSA public key (name.pub). The
format of the key files is up to you.

e. You will be provided with code to compute modular inverses and to test whether
a number is prime.

crypt.py — encrypt and decrypt data using AES-128 and RSA.
a. The program takes four command line arguments: a single flag (-e or -d)

indicating whether the program is being used to encrypt or decrypt a message,
the name of the public or private key file to use (generated by keygen.py), the
name of the file to encrypt or decrypt, and the name of the output file. For
example, the following command will encrypt the file secret.txt using Gru’s
public key file gru.pub to produce the cipher text file secret.cip:  
 
 ./crypt.py -e gru.pub secret.txt secret.cip 
 
Then the following command would decrypt the file secret.cip: 
 
 ./crypt.py -d gru.prv secret.cip secret.txt

CMSC 426/626 - Fall 2014 Project 2 Page �2

b. To encrypt a file, the program must generate a random key K for AES-128 using
random.SystemRandom or os.urandom(), use the key K with AES-128 to
encrypt the data from the input file, use RSA with the public key file specified on
the command line to encrypt K (we refer to the encrypted K as K’ in the
following), and write the encrypted data and K’ to the output file. The format of
the output file (how to store K’ along with the encrypted data) is your choice.

c. To decrypt a file, the program must read the encrypted data and K’ from the input
file, RSA-decrypt K’ to recover the key K, use K with AES-128 to decrypt the
data, and write the decrypted data to the output file.

d. You must write the RSA code; you may not import RSA code from another
module such as PyCrypto.

e. You must choose an appropriate mode of operation for AES-128.
In addition to the two Python programs, you must provide a written description of the
design of your programs and a screen capture of a session demonstrating that your
programs work. For example, a screen capture of the following sequence of commands
would be sufficient (this assumes the files message.txt and message2.txt already
exist):

./genkeys.py gru

./genkeys.py drn

cat message.txt

./crypt.py -e drn.pub message.txt message.cip

cat message.cip

./crypt.py -d drn.prv message.cip message.txt

cat message.txt

cat message2.txt

./crypt -e gru.pub message2.txt message2.cip

cat message2.cip

./crypt -d gru.prv message2.cip message2.txt

cat message2.txt

Provided Files
The file proj2.py contains functions to compute the modular inverse and to test
whether an integer is a prime:

modinv(a, m) computes the inverse of a mod m.
is_probable_prime(p) returns True if p is a probable prime; False
otherwise.

CMSC 426/626 - Fall 2014 Project 2 Page �3

The file also includes the function egcd(x, y) which computes the gcd of x and y
using the extended Euclidean algorithm. This function is used by modinv().

Project Submission
The project will be submitted in two phases: a milestone and a final submission. Both
the milestone and final submission are to be turned-in on Blackboard.
Milestone - Due Tuesday, November 18.
The Milestone submission will consist of one file: genkeys.py.
Final Submission - Due Tuesday, November 25.
The final submission will consist of three files:

1. A document (DOC, DOCX, or PDF) providing a brief description of the design of
your programs and including a screen capture of the working programs as
described above.

2. The program genkeys.py.
3. The program crypt.py.

