
CMSC 426/626 Labs 1

Address Space Layout Randomization Lab

Copyright c© 2014 Christopher Marron, University of Maryland Baltimore County.
Adapted from Address Space Layout Randomization Lab, available at
http://www.cis.syr.edu/˜wedu/seed/all_labs.html.
Copyright c© 2006 Wenliang Du, Syracuse University.
The development of this document is funded by the National Science Foundation’s Course, Curriculum, and
Laboratory Improvement (CCLI) program under Award No. 0618680 and 0231122. Permission is granted
to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation. A copy of the license can be
found at http://www.gnu.org/licenses/fdl.html.

1 Overview

Address space layout randomization (ASLR) is a computer security technique which involves randomly
arranging the positions of key data areas in a process’ address space. These key data areas usually includes
the base of the executable and position of libraries, heap, and stack. Although ASLR does not eliminate
vulnerabilities, it can make the exploitation of some vulnerabilities much harder. For instance, a common
buffer-overflow attack involves loading the shellcode on the stack and overwriting the return address with
the starting address of the shellcode. In most cases, attackers have no control over the starting address of the
shellcode: they have to guess the address. The probability of a successful guess can be significantly reduced
if the memory is randomized.

2 Memory Layout in Minix 3

Important Note: After Minix 3.1.0, significant changes were made to the process management service.
This lab must be completed using Minix 3.1.0.

The Process Manager (PM)’s process table is called mproc and its definition is given in

/usr/src/servers/pm/mproc.h.

The process structure defined in mproc.h contains an array mp seg which has entries for the text, data
and stack segments respectively. Each entry consists of three variables storing the virtual address, physical
address and length of the segment. Minix 3 programs can be compiled to use either the combined I and
D space (Instruction and Data), where the system views the data segment and the text segment as one
BIG segment or separate I and D space. Combined I and D spaces are necessary for certain tasks like
bootstrapping or for cases in which a program needs to modify its own code. By default all the programs
are compiled to have Separate I and D spaces. Figure 1 shows a process in memory (OS independent).

When a program is compiled to have a common I and D space, the text segment is always empty and
the data segment contains both the text and the data. This is a security vulnerability. The system no longer
differentiates between the two segments so an attacker may be able to load malicious machine code in the
data segment and make the system execute it. This is particularly bad if the program runs with elevated
privileges (e.g. setuid root). The memory layout for a combined I and D space is shown in Figure 2.

A program, when compiled to have separate I and D space, will have non-zero text and data segments.
This is done not as a security measure but for efficiency reasons: having separate I and D segments allows
many instances of the same program to share the same text segement. The memory layout for separate I and
D spaces is represented Figure 3.



CMSC 426/626 Labs 2

Figure 1: A process in memory

Virtual Physical Length
Stack 0x8 0xd0 0x2
Data 0 0xc8 0x7
Text 0 0xc8 0

Figure 2: Memory map (mem map) for combined I and D

Given a virtual address and a space to which it belongs, it is a simple matter to see whether the virtual
address is legal or not, and if legal, what the corresponding physical address is.

2.1 exec() system call

Once a program is compiled, it must be loaded into memory to execute. The exec() system call handles
this process. The exec() call performs several steps:

1. Check Permissions – is the program file executable?

2. Get the segment and the total sizes.

3. Fetch the arguments and the environment from the caller.

4. Allocate new memory and release un-needed old memory.

5. Copy the stack to the new memory image.

6. Copy the data (and maybe text) segment to the new memory image.

7. Handle setuid/setgid bits.



CMSC 426/626 Labs 3

Virtual Physical Length
Stack 0x5 0xd0 0x2
Data 0 0xcb 0x4
Text 0 0xc8 0x3

Figure 3: Memory map (mem map) for separate I and D

8. Fix-up process table entry.

9. Tell the kernel that the process is now runnable.

In order to randomize the starting address of a variable on the stack, we need to introduce some level of
randomness in step 4 or 5. Randomizing the gap space (figure 1) in a way that does not effect the execution
of a process is a possible approach.

2.2 malloc() library call

malloc() is used to allocate memory from the heap. It causes the data segment to expand into the lower
memory region of the gap area (while the stack eats away the top portion). malloc() invokes the brk()
call, which in turn calls do brk(), causing the data segment to grow. do brk() also checks if the data
segment is colliding with the stack segment. If all the conditions are satisfied, the data segment increases
by the amount of memory requested, with adjustments made to ensure that the segment ends on a word
boundary. The address of a heap area requested by malloc() can easily be randomized by malloc-ing a
small random sized fragment after exec-ing the process or before malloc-ing for the first time.

3 Lab Task

Your task is to modify Minix 3 to randomize the locations of variables on the stack and the heap. We have
mentioned two areas of the Minix 3 source code where you should consider making modifications:

1. In /usr/src/servers/pm, the file exec.c defines the TEXT, DATA, and STACK segments
and allocates memory. The file mproc.h defines the mproc structure that stores the locations of
segments for each process.

2. In /usr/src/lib/ansi, the file malloc.c defines the malloc() function for allocating ad-
ditional heap space.

You will need to generate random numbers, and you may use either of two random number generators
available in Minix 3: rand() or random().

3.1 Testing your modifications

The following program creates a variable on the stack and another on the heap and prints their addresses:

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
#include< alloca.h>



CMSC 426/626 Labs 4

int main(int argc, char *argv[])
{
int onStack;
int *onHeap = (int *) malloc(sizeof(int));
printf("Starting Stack at %x \nStarting Heap at %x\n", &onStack, onHeap);
free(onHeap);
return 0;
}

If you have randomized the location of variables on the stack and heap correctly, the program should
print different memory addresses on each execution.

4 Submission

Your final submission will consist of a written report and soft copy of modified source files. The written
report must include a general description of your approach, descriptions of the specific modifications made,
and evidence that the modifications work correctly (this could be a screen capture of several executions of
the test program given above). The report must be well-written, using correct spelling and grammar. The
source files provided must be sufficient for me to build your modified version of Minix 3 and test it myself,
if necessary.

In addition to the final submission, you must submit two milestone assignments. Milestones will not be
graded for writing quality but must, of course, be understandable:

Milestone 1 Written report describing your proposed implementation of ASLR for the stack. The report
must include a draft version of your stack ASLR code (include code excerpts within the report).

Milestone 2 Written report describing your proposed implementation of ASLR for the heap. The report
must include a draft version of your code heap ASLR code (include code excerpts within the report).


