
CMSC 426/626 - Fall 2014 SSH and Weak Keys Activity Page �1

SSH and Debian Weak Keys
The purpose of this activity is to gain hands-on experience with the SSH protocol and to explore
how the Debian weak keys bug could be exploited to gain access to a system.

Examining SSH Traffic
Perhaps we can find a user's public key by sniffing their network traffic. An ssh session for a
user on rosencrantz.blue.net was captured and saved. We will use CloudShark to look
at the traffic and see if we can find the user's public key.

a. Download the packet capture file:

 http://www.csee.umbc.edu/~cmarron/pub/ssh_example.pcapng

b. Browse to the CloudShark website www.cloudshark.org and click the Upload button.

c. Select the file ssh_example.pcapng and upload it to CloudShark. You should see
the following list of packets, which includes packets sent between
rosencrantz.blue.net (192.168.1.118) and the Ubuntu workstation the user was
working on (192.168.1.166):

d. Scroll down until you see the beginning of the SSH protocol.

e. You can examine the contents of a packet by clicking on it in the upper window. A list of
the protocol layers will appear in the lower window; click on the “▹” to display details of
a particular protocol level.

http://www.csee.umbc.edu/~cmarron/pub/ssh_example.pcapng
http://www.cloudshark.org

CMSC 426/626 - Fall 2014 SSH and Weak Keys Activity Page �2

1. Find the TCP packet that initiates the SSH connection.

What is the packet number (first column)?

2. Find the SSH Protocol messages.

What version of OpenSSH is the server running?

What version of OpenSSH is the client running?

3. Find the SSH key exchange init packets.

What is the client's preferred key exchange algorithm (first in the list)?

What is the client's preferred encryption algorithm?

What is the server's preferred key exchange algorithm?

What is the server's preferred encryption algorithm?

CMSC 426/626 - Fall 2014 SSH and Weak Keys Activity Page �3

4. Recall, the client and server must agree on key exchange and encryption algorithms. They
will use the first entry in the client's list that is also in the server's list.

What key exchange algorithm will the server and client agree to use?

What encryption algorithm will the server and client agree to use?

5. Packets 23 – 27 complete the Transport Protocol key exchange.

What cryptographic algorithm is implemented by these packets?

Examine the contents of these packets. You may also need to review the “SSH Background”
notes to answer the following questions.

At any point in this exchange, does the client transmit its public key?

CMSC 426/626 - Fall 2014 SSH and Weak Keys Activity Page �4

6. Examine the SSH Protocol contents one of the subsequent SSH packets, e.g. packet #29.

Can you read the contents of the packet? Why or why not?

Recall that the SSH Transport Protocol sets-up a connection before the Authentication
Protocol is invoked.

Should be expect to find a user's public key by sniffing the SSH session? Explain.

CMSC 426/626 - Fall 2014 SSH and Weak Keys Activity Page �5

What good is a user's key?
A key is weakly generated if it is computationally feasible to derive the private key from the
public key. In the context of SSH, what good is the private key to an attacker?
1. Suppose an attacker is in possession of Alice's private SSH key for the server

big.secret.net. The private key is in the file id_rsa_alice and Alice's user name
is alice. Review the man page entry for the ssh command and explain how the “-i
identity_file” and “-o PasswordAuthentication=no” options can be used to
login to big.secret.net as Alice. Write down the exact command that you would use.

2. For your answer to question #1, what assumption did you have to make about the SSH server
configuration on big.secret.net?

So, if we can see a user's public key and determine it is weak, then we can derive the private key
and use it to login to the user's account – provided the server is configured favorably.
Unfortunately, we have already seen that the client’s public key is not transmitted as part of the
SSH Transport Protocol.

CMSC 426/626 - Fall 2014 SSH and Weak Keys Activity Page �6

The Debian “Fiasco”
A problem with Debian OpenSSL was discovered in May 2008, and it was determined that the
error been in place since September 2006 when a code change eliminated the entropy source for
the OpenSLL random number generator, rendering the output predictable.

Reduced entropy in the random number generator results in weak cryptographic keys. Affected
protocols included SSH, OpenVPN, DNSSEC, and key material in X.509 certificates for SSL/
TLS. The original Debian Security Advisory describes the problem and steps users should take
to secure their systems (http://www.debian.org/security/2008/dsa-1571)

!

The change was prompted by a report that Valgrind (a memory check tool) was flagging use of
uninitialized memory by any program that used the OpenSSL RNG. There was some discussion
between two Debian maintainers as to how to fix the bug, but in the end they decided to
comment-out some code to stop the Valgrind messages; unfortunately, the code that they
removed introduced random data into a buffer used for random number generation. As a result,
there was very little entropy (randomness) in the RNG output. For SSH in particular, there were
only 215 = 32,767 different keys for each algorithm (RSA or DSA) and size (1024, 2048, etc.).

http://www.debian.org/security/2008/dsa-1571

CMSC 426/626 - Fall 2014 SSH and Weak Keys Activity Page �7

Demonstration — Exploiting Weak SSH Keys
It is easy to reconstruct the Debian SSH error — it is not necessary that the target server be
running the old version of ssh, just that the user keys were generated with the old version. In this
demonstration, we will

• Review how public keys are used for user authentication in SSH.

• Examine a public-available “blacklist” of weak SSH keys and discuss how it may be used
to attack a vulnerable user.

• Demonstrate a Python script to automate the attack; examine the use of the pexpect module.

• Demonstrate a tool published by Debian to help users and administrators identify
vulnerable keys on their systems.

Who was responsible?
It may appear that the developers were acting irresponsibly, but they had in fact discussed their
plans, though perhaps not entirely clearly, on the opnessl-dev mailing list (http://marc.info/?
t=114651088900003&r=1&w=2), and no one told them it was a bad idea. It’s also interesting to
read the discussion between the maintainers, which is recorded by the Debian bug-tracking
system (http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=363516).

Once the problem was discovered, Debian quickly fixed it and released a tool that could
determine if a given key had been generated using the weak RNG (dowkd.pl.gz, referenced in
the Debian Security Advisory). In addition there was debate over who was really to blame for
the error:

• Should the Debian maintainers have known better than to comment-out crypto code they
didn’t fully understand?

• Should the OpenSSL developers have been following the openssl-dev discussion?

There is one very good point that can be made: had the Debian developers reported the bug and
proposed change to the OpenSSL developers directly, the error would not have been made. The
article by Ben Laurie also brings up the fact that Debian made fixed code available five days
before they issued the security advisory. Experienced hackers could easily have noticed the
change to the code and used that information to exploit vulnerable systems before the fixed code
could be installed.

http://marc.info/?t=114651088900003&r=1&w=2
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=363516

CMSC 426/626 - Fall 2014 SSH and Weak Keys Activity Page �8

References

Debian Security Advisory, 13 May 2008, http://www.debian.org/security/2008/dsa-1571

Bruce Schneier, Random Number Bug in Debian Linux, https://www.schneier.com/blog/archives/
2008/05/random_number_b.html

Steinar Gunderson, Some maths , http://plog.sesse.net/blog/tech/
2008-05-14-17-21_some_maths.html

Ben Laurie, Debian and OpenSSL: The Aftermath, http://www.links.org/?
p=328#comment-177420

Openssl-dev discussion, http://marc.info/?t=114651088900003&r=1&w=2

XKCD, security_holes.png, http://imgs.xkcd.com/comics/security_holes.png

http://www.debian.org/security/2008/dsa-1571
https://www.schneier.com/blog/archives/2008/05/random_number_b.html
http://plog.sesse.net/blog/tech/2008-05-14-17-21_some_maths.html
http://www.links.org/?p=328#comment-177420
http://marc.info/?t=114651088900003&r=1&w=2
http://imgs.xkcd.com/comics/security_holes.png

