Random Number Generation Exercises

A simple LCG. Consider the linear congruential generator with parameters $a=5, c=0$, and $n=32$.
(a) What is the period of $X_{0}=1$?
(b) What is the period of $X_{0}=2$?
(c) Are they any values of X_{0} with a period greater than eight?

Recovering parameters of an LCG. You observe the following sequence of numbers generated using a linear congruential generator (LCG):

$$
16,55,172,11,40,127,132,147,192,71,220, \ldots
$$

Find the values of a, c, and n. Hint: use the formula for an LCG to create a system of two linear equations and solve for a; once you have a, it's easy to solve for c and n.

When to re-seed an AES-based PRNG. Find NIST SP 800-90A on the NIST website. How many requests may be made to the PRNG discussed in class before it must be reseeded? Look for the value of reseed_interval.

Solving for \mathbf{n} in BBS. First, here is another way to think about what it means for two numbers x and y to be congruent modulo n. If $x \equiv y \bmod n$, then x and y differ by a multiple of n; in a formula, $x-y=\lambda n$ for some integer λ. Recall that in the BBS generator, the state x_{i} is updated as follows:

$$
x_{i+1} \leftarrow x_{i}^{2} \bmod n
$$

Or, in other words, $x_{i+1} \equiv x_{i}^{2} \bmod n$, so $x_{i}^{2}-x_{i+1}=\lambda_{i} n$ for some integer λ_{i}. Suppose a developer has implemented BBS incorrectly so that it uses the entire state x_{i} as output rather than just the low order bit of the state. You observe the following output of the PRNG:

705387546, 24704853224, 58631086274, 73983477812, 59076648249, 51739009943, 9535414637, 9339381885

Determine the value of n. Hint: use the data to determine $\lambda_{i} n$ for $i=1,2, \ldots, 7$, then use the egcd() function to find n.

