# Diffie-Hellman CMSC 426/626 - Fall 2014

## Outline

- Key Exchange
- The discrete logarithm problem
- Diffie-Hellman
- Man in the Middle
- Elliptic Curve Cryptography

# Key Exchange with RSA

- Alice and Bob want to share a secret key for use with a symmetric algorithm such as AES.
- It is more efficient to encrypt data with AES and encrypt the key with RSA.



# Discrete Logarithms

- The security of the Diffie-Hellman algorithm is based on the discrete logarithm problem.
- Let p be a prime number
- An integer a, 0 < a < p, is a primitive root mod p if the powers of a mod p are distinct and consist of all the numbers from 1 to p - 1.
- Given b, 0 < b < p, there is a number x such that b = a mod p.</li>
- The number x is the discrete logarithm of b base a mod p.

# Dlog Example

Find the discrete logarithm of 17 base 3 mod 29
 (p = 29, a = 3, b = 17)

```
>>> x = 1
>>> while pow(3,x,29) != 17:
... x = x + 1
...
>>> x
21
>>> pow(3,21,29)
17
```

- What happens if *a* is not primitive? The discrete log of *b* may not exist.
- For large primes *p* finding the discrete logarithm of a number is infeasible.



Random secret

is 12.

### Example >>> Xa = 12 >>> Ya = pow(3, Xa, 29) · Use the same values as >>> Yb = pow(3, Xb, 29) in the previous example >>> # Alice receives Yb and computes Ka >>> Ka = pow(Yb, Xa, 29) • Alice's private value $(X_A)$

Alice and Bob have a

shared secret key!

## "Real" DH

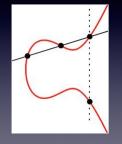
- In reality, DH is a bit more complicated.
- Large prime *p* (at least 1024 bits); α generates a subgroup of prime order q (at least 160 bits):

 $a^0 \mod p$  $a^1 \mod p$  $a^q \mod p = a^0 \mod p$ 

### Man in the Middle

- Unfortunately, the protocol as described is susceptible to a man-in-the-middle attack (MitM).
- Eve can pretend to be Bob to Alice and pretend to be Alice to Bob - all communication flows through Eve!
- Certificates can fix this problem. The CA would sign the public values (e.g. Y<sub>A</sub> and Y<sub>B</sub>).
- There are other DH-based protocols to prevent MitM

### Elliptic Curve Cryptography


- Elliptic curves are a complex mathematical object that can be used in place of mod *p* arithmetic.
- What that means is that elliptic curves provide us with a finite collection of numbers which we know how to add and for which addition acts as we would expect.
- **Notation:**  $F_p$  denotes the set of integers mod p along with addition and multiplication.

# Elliptic Curves

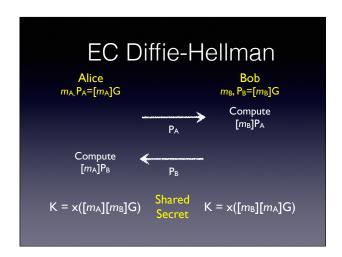
• Solutions (x, y) to equations of the form

E: 
$$y^2 = x^3 + ax + b$$

- For cryptography, x and y are integers mod p.
- The addition rule can be derived geometrically.



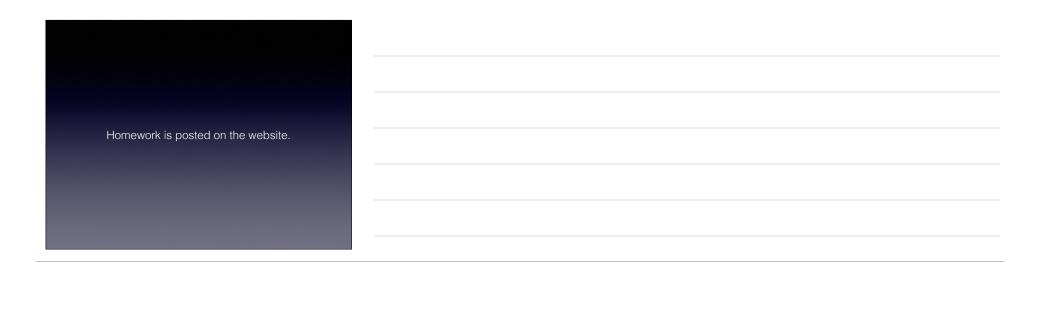
### Addition


- Given points  $P = (x_P, y_P)$  and  $Q = (x_Q, y_Q)$
- $\bullet \ \ -\mathsf{P} = (x_\mathsf{P}, -y_\mathsf{P})$
- Sum P + Q = R =  $(x_R, y_R)$  is given by
- $\bullet x_R = s^2 x_P x_Q$
- $y_R = s(x_P x_R) y_P$
- Where  $s = (y_P y_Q) / (x_P x_Q)$

### Rational Points

- $E(F_p)$   $F_p$  rational points; P with x and y in  $F_p$
- | E(F<sub>p</sub>)| is finite; cryptographic subgroup?
- Especially interested in p a NIST prime.
- Generalized Mersenne primes
- E.g.  $p = 2^{384} 2^{128} 2^{96} + 2^{32} 1$
- [m] P = P + P + ··· + P (m-fold sum)

### EC Diffie-Hellman


- Alice and Bob agree on an elliptic curve E(F<sub>P</sub>) and a group generator G of order q
- Alice's public and private values
  - Private random value mA
- Public  $P_A = [m_A]G$ , a point on the curve
- Bob's values: private  $m_{B}$ , public  $P_{B} = [m_{B}]G$



# ECC vs. Classical DH

| Classical DH                                              | ECC DH                                                              |
|-----------------------------------------------------------|---------------------------------------------------------------------|
| System parameters a, q                                    | System parameters $G, E(F_p)$                                       |
| Fundamental Operation Exponentiation mod $p$ $a^x \mod p$ | Fundamental Operation<br>EC Point Addition<br>[ <i>m</i> ] <i>P</i> |
| Parameter Sizes q at least 160 bits p at least 1024 bits  | Parameter Sizes q at least 160 bits p about the same size as q      |

- ECC gives comparable security for much smaller parameter sizes!
- There are other ECC algorithms besides ECC DH, but we won't go into those.

