Public Key / RSA CMSC 426/626 - Fall 2014

Outline

- Public Key Fundamentals
- Signatures
- Certificates
- The RSA Algorithm

Why Public Key?

• The problems of symmetric key distribution...

The vBNS Network (Jeff Brown, National Laboratory for Applied Network Resea

Requirements

- Easy to generate public and private keys.
- Given the public key of a recipient, easy to generate an encrypted message.
- Using the private key, it is easy for the recipient to decrypt a message.
- An adversary who knows a public key can not determine the corresponding private key.
- An adversary who knows a public key and a message encrypted with that key can not recover the plaintext message.

In Formulas...

- Easy for party B to generate PU_B and PR_B .
- Given PU_B it is easy to compute $C = E(PU_B, M)$.
- Easy for recipient B to compute $M = D(PR_B, C)$.
- Given PU_B , it is infeasible to determine PR_B .
- Given PU_B and $C = E(PU_B, M)$, it is infeasible to determine M.

Diffie and Hellman

- Whitfield Diffie and Martin Hellman wrote down these requirements in 1976.
- Three mathematicians at GCHQ (Ellis, Cocks, Williamson) invented such an algorithm prior to 1976, but it was classified.

(from telegraph.co.uk

Public Key Systems

- *RSA* Ron Rivest, Adi Shamir, Leonard Adleman in 1977 (also Clifford Cocks in 1973).
- Diffie-Hellman Whitfiled Diffie and Martin Hellman (also Malcom Williamson in 1974).
- *Digital Signature Standard* NIST FIPS PUB 186 in 1991; revised in 1993. Signatures only.
- Elliptic Curve Cryptography not really a new PKC system, but a different approach to constructing them.

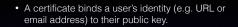
What is it good for?

Confidentiality

- Alice encrypts message for Bob using PUB.
- Bob receives the message and decrypts with PR_{B} .
- Must have *PR*^B to decrypt; presumably only Bob can do this.

Authentication / Integrity

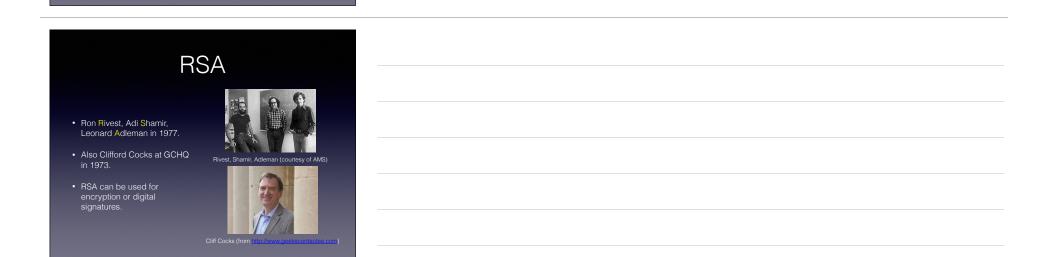
- Alice encrypts message for Bob using her own private key *PR_A*.
- Bob decrypts using *PU*_A (remember this is *public*).
- Must have *PR*_A to create the message; presumably only Alice can do this.


Digital Signatures

- Alice wants to send a message *M* to Bob, ensuring integrity and authenticity.
- Alice has public and private keys (*PU_A*, *PR_A*) and has published her public key in a directory.

Certificates

- Remember the "directory" from the previous slide? How do you know Alice's public key really belongs to Alice?
- What if Eve posts a public key and email address and *says* it belongs to Alice?
- How can we fix this?


• The public key, along with identifying information, is signed by a *Certification Authority* (CA).

ISO X.509

• The standard for certificates; published as RFC 2459.

Certificate ::= SEQUENCE	
tbsCertificate	TBSCertificate,
signatureAlgorithm	AlgorithmIdentifier,
signatureValue	BIT STRING }
TBSCertificate ::= SEQU	
version [0]	EXPLICIT Version DEFAULT v1,
serialNumber	CertificateSerialNumber,
signature	AlgorithmIdentifier,
issuer	Name,
validity	Validity,
subject	Name,
	SubjectPublicKevInfo,
	IMPLICIT UniqueIdentifier OPTIONAL,
Issueroundrein [1]	If present, version shall be v2 or v3
subjectUniqueID [2]	IMPLICIT UniqueIdentifier OPTIONAL,
	If present, version shall be v2 or v3
	EXPLICIT Extensions OPTIONAL
	If present, version shall be v3

- One last point about certificates: you still need to deliver CA public keys to the end users in a trusted manner.
- The CAs' signing keys are the root of trust for a public key infrastructure (think HTTPS).

rivate Information	Public Information		
p A large prime number	N The product of p and q		
q A large prime number	e The encryption exponent		
d The decryption exponent			
Encryption $C = M^{\circ} \mod N$ A message M is a number	Decryption $M = C^d \mod N$ ber between 0 and <i>N</i> - 1.		
A message wis a num	ber between 0 and /v - 1.		

• For <i>p</i> and <i>q</i> , "large" means "at least 512 bits," but 1024 bits is now typical.		
• Knowing only N and e, it is infeasible to find d.		
• Knowing <i>p</i> , <i>q</i> , and <i>e</i> , it is easy to find <i>d</i> .		
• <i>d</i> and <i>e</i> satisfy a mathematical relation:		
$d \cdot e = 1 \mod \Phi(N)$		
 For our purposes, it is good enough to say that 		
$\Phi(N) = (p-1) \cdot (q-1).$		

Some Examples

- Exercise: p = 3, q = 11, e = 7, M = 5. Encrypt M and then decrypt using RSA.
- A larger example in Python.

Security of RSA

- The security of RSA is based on the difficulty of integer factorization it is infeasible to factor *N*.
- Current record for factorization: 768 bit RSA composite, completed in December 2009.
- It is believed that finding Φ(N) is no easier than factoring N.

Homework is posted on the website.		
	Homework is posted on the website.	