Password Selection

and Alternatives
CMSC 426/626 - Computer Security
Fall 2014

Outline

- User password selection and rules
- Bloom Filters
- Token-based Authentication

Password Rules

- Users pick terrible passwords - just look at the beginning of the RockYou list:

123456, 12345, 123456789, password, loveyou, princess, 1234567 , rockyou, 12345678 , abc123, etc.

- Primary defenses are education and enforcement of password rules.

Other Options

- Computer generated passwords or pass phrases can be done well but are often unpopular with users.

Personal experience: pass-phrases are better.

- Reactive password checking - try to crack users' passwords on your system.
- Proactive password checking - check password at the time the user selects it.

Proactive Checking

- Rule-based - check length, proper mix of character classes, etc
Better than nothing, but annoying for users
- Dictionary-based - do not allow passwords from a dictionary of "bad" passwords.

Need a big dictionary, and it is slow.

- Bloom Filters - clever technique

Bloom Filters

- Need k independent hash functions $H_{i}(x)$.
- Each $H_{i}(x)$ takes values in $\{0,1, \ldots, N-1\}$.
- Need N-bit table $T=\left(b_{0}, b_{1}, \ldots, b_{N-1}\right)$.
- For each word in dictionary of "bad" passwords, compute the k hashes and set the corresponding bits in T.

Example

- $H_{0}(x)=$ first nibble of MD5 hash of x.
- $H_{1}(x)=$ second nibble of MD5 hash of x.
- $\mathrm{H}_{2}(x)=$ third nibble of MD5 hash of x
- $\mathrm{H}_{3}(x)=$ fourth nibble of MD5 hash of x
- T starts as all zeros
- MD5 of 123456 is $£ 447$. . so set bits 15 , 4, and 7 in T.
- MD5 of 12345 is d577. . . so set bits 13,5 and 7 in T.
- MD5 of 123456789 is b2cf. . . so set bits $11,2,12$, and 15 in T.

$$
T=(0,0,1,0,1,1,0,1,0,0,0,1,1,1,0,1)
$$

- User selects new password x
- System computes $\mathrm{H}_{0}(x), \mathrm{H}_{1}(x), \mathrm{H}_{2}(x), \mathrm{H}_{3}(x)$ and checks corresponding bits in T.
- If all of the bits are set (1), then reject the password x.
- Guaranteed that 123456, 12345 and 123456789 will be rejected
- Continuing with the example.
$T=(0,0,1,0,1,1,0,1,0,0,0,1,1,1,0,1)$
- Suppose user selects password "blargh". MD5 hash is $5 f 71$.
- Check bits 5, 15, 7, and 1 in T
- 5,15 , and 7 are set, but 1 is not set, so we accept the password.

Real Parameters

- k in the range 2-6 is reasonable.
- N is large, an order of magnitude times larger than the dictionary size.
- False Positive - reject a password that is not in the dictionary. Want to minimize these!

False Positive Rate

- Let R be ratio of N to the dictionary size D, that is $R=N / D$.
- Let p be the probability of a false positive
$p=\left(1-e^{k / R}\right)^{k}$
which gives
$R=-k / \ln \left(1-p^{1 / k}\right)$

Example

- Suppose I have a dictionary of 1,000,000 words and want to implement a Bloom Filter with $k=6$ and false positive probability of p $=.001$. What should N be?
$R=-6 / \ln \left(1-.001^{1 / 6}\right)=15.78406$
so N needs to be $15,784,060$, or
approximately 16 million bits.

Token-based
Authentication

Something you have...

- A token is a physical device that is used as part of the user authentication process.
- User must be in possession of token to be authenticated to the system.
- We'll look at two types of token: smart cards and one-time password generators.

Smart Cards

- If your mobile phone has a SIM, that is a smart card.

FIPS 201

- FIPS 201, Personal Identity Verification, defines the ways in witch a smart ID card can be used to verify identity.
- We only care about Authentication Using Asymmetric Cryptography.

- Once the reader has verified the signature and validated the certificate, it extracts the user identity from the cert and forwards it to the authorization service.
- The public key algorithm would typically be RSA with a 2048-bit modulus.

One-Time Passwords

- Eample: RSA Securld
- Device generates a -passcode every minute
- Server knows how to generate code to verify user's input
- May be used in conjunction with usual id and password

Types of OTP

- RSA Securld is a Time-Based OTP system since the creation of the passcode is based on time (well, there's also a secret key...)
- HMAC-Based OTP (HOTP) defined in RFC 4226.

Uses a counter synchronized between the client and server. OTP derived from HMAC of the counter.

- Password-Based OTP (my term) defined in RFC 2289
User receives random seed from server hashes this along with password N times, saving hashes. OTP derived from hashes used in reverse order, i.e. use the $N^{\text {h }}$ hash, next time N-1st, etc.
- Why reverse order?

