
Cryptographic Hashes

CMSC 426/626 - Computer Security
Fall 2014

Outline

• Authentication vs. Confidentiality

• Simple Hash Functions

• Secure Hash Functions

• HMAC

Authentication

• If Alice and Bob share a secret key and Alice
sends Bob an encrypted message, can Bob
assume the message is “authentic?”

• What do we mean by authentic?

Consider
• A block cipher in ECB mode…

An attacker could re-order blocks in the message
without affecting Bob’s ability to decrypt it.

• A block cipher in CFB or CTR mode, or a stream
cipher…

If the plaintext is highly structured, an attacker can
modify the plaintext without decrypting the
message.

In fact, it is possible to authenticate a message
without encrypting the message.

Authentication and Confidentiality are distinct.

Hash Functions
• Given a message M of arbitrary length, a hash function H

produces a fixed size digest H(M).

• It should be “easy” to compute H(M) for any M.

• Hashes are an alternative to MACs (we’ll cover those later)

(Merkle-Damgard Construction; from Wikipedia, public domain)

Uses for Hashes
• For authentication and integrity.

• With encryption: append hash to M before encrypting.

• Keyed hash: Alice and Bob share a secret authentication
key K; Alice authenticates message M by appending

hK = H(M || K)

• Digital signature: Alice public-key encrypts the hash of M
with her private key Apriv

s = E[Apriv, H(M)]

Questions
Suppose Alice and Bob are using a keyed hash
scheme with shared key KAB. Alice sends Bob
the message M along with H(M || KAB).

1.How does Bob verify the message is really
from Alice?

2.How does Bob verify that the message has not
been altered?

Pre-Image Resistance

• For any given hash code h, it should be
infeasible to construct an M such that H(M) = h.

• In the keyed hash case, pre-image resistance
prevents an attacker from recovering M||K, and
thus K.

Weak Collision Resistance
• For any given message M, it should be infeasible to

construct a different message N such that H(M) = H(N).

• In digital signature applications, lack of weak collision
resistance allows an attacker to find a different message
with the same signature.

I love you.

Digital
Signature

I have your
dog,

sucker.
Digital

Signature

?

Alice Eve Bob

Why would Alice
take my dog?

Strong Collision Resistance
• It should be infeasible to construct a pair of different messages

(M, N) such that H(M) = H(N).

• Subtly different from weak collision resistance.

• Prevents the following sort of attack:

1. Eve constructs two messages with the same hash value.
One is an I.O.U. for $10, the other is an I.O.U. for $10,000.

• Eve gets Alice to sign the $10 I.O.U.

• Eve insists on being paid her $10,000.

Suppose H() is a strongly collision resistant hash
function that maps messages of arbitrary length to
an n-bit hash value.

1. Is it true that for all distinct messages x and y,
H(x) ≠ H(y) ?

Simple Hash Functions
• Break the M into b-bit blocks M1, M2, …, Mn.

h = M1 ⨁ M2 ⨁ … ⨁ Mn

• A variation: let r(x, n) denote the left circular shift of x by
n bits

h = M1 ⨁ r(M2, 1) ⨁ … ⨁ r(Mn, n-1)

• There are 2b possible hash codes, so if the message is
modified or corrupted, there is probability 2-b that the
hash code h will be unchanged.

• Unfortunately, neither of these schemes is collision
resistant (weak or strong).

• Suppose I construct the following messages:

M = M1, M2

N = N1, N2, M1⨁M2⨁N1⨁N2

N′ = N1, N2, r(M1 ⨁ r(M2, 1) ⨁ N1 ⨁ r(N2, 1), -2)

• If H is the first simple hash, then H(M) = H(N).

• If H is the variation, then H(M) = H(N′)

One More Example
• Another simple hash: let a message be

represented by a list of integers

M = (a1, a2, …, at)

• Let N be a positive integer and define H(M) by

h = (a1 + a2 + ⋯ + at) mod N

• Is H pre-image resistant?

Brute Force Costs
For a hash with digest of size n:

• Constructing a pre-image: 2n hash computations

• Finding a weak collision: 2n hash computations

• Finding a strong collision: 2n/2 hash computations
(this is due to the birthday problem)

For example, the MD5 message digest is 128 bits, so it
should take 264 hash computations to find a strong
collision pair.

MD5
• Ron Rivest,1992

!
• Operates on 32-bit words

with addition mod 232

!
• Message processed in

512-bit “chunks” broken
into 16 32-bit words. 

• Basic function applied 64
times per chunk. (from Wikipedia by Surachit; CC A-SA 3.0)

MD5 Attacks
• 2004 - Wang, Fang, Lai, and Yu demonstrate

first practical collision
• 2005 - Lenstra, Wang, de Weger produce

colliding X.509 certificates
• 2008 - “normal” certificate converted to

intermediate CA certificate
• 2012 - Flame malware uses fraudulent MS code

signing certificate; constructed using collision

The SHA Family

Algorithm Comments Reference

SHA-0 Had problems FIPS PUB 180
(1993)

SHA-1 Corrected problems in
SHA-0; similar to MD5

FIPS PUB 180-1
(1995)

SHA-2 Family of algorithms
(SHA-256, SHA-512, etc.)

FIPS PUB 180-2
(2002)

SHA-3 Very different algorithm;
selected in 2012

FIPS PUB 202
(DRAFT)

Current Status
• SHA-0 and SHA-1 produce a 160 bit digest, so

80 bits of security for strong collision
resistance. Too small?!

• SHA-2 provides 256-, 384-, and 512-bit
options. No known attacks against SHA-2, but
mathematics is similar to MD5, so NIST wanted
an alternative...just in case.

• SHA-3 selected in 2012 after an open
competition. It is quite different from SHA-2.

SHA-512

• Processes message in 1024-bit blocks.
• Maintains 512-bit internal state.
• Uses an 80-round function to update

state for each block.
• Digest is state after processing the last

message block.

M2 1024 bitsM1 1024 bits M3 Padding Length

F F FH0 (IV) + H1 + H2

+

Hn	

Digest

SHA-512
Two full blocks and one partial block

Length field is 128 bits.	

Padding is a single 1 followed by 0s.	

Padding is always used.	

“+” is word-by-word mod 264.

The F-function
• The F-function consists of 80 rounds.
• Each round involves basic boolean

operations (AND, OR, XOR, NOT).
• Each round incorporates a portion of the

message block (Wt) and a constant (Kt).

The F-function provides good mixing.!
Each digest bit is a function of every input bit.

SHA-3
• “Sponge” construction
• f-function operates on 1600-bit state
• Message blocks xor-ed with state

3.4 Comparison with KECCAK-f

The KECCAK-f family of permutations, originally defined in [8], is the specialization of the
KECCAK-p family to the case that nr =12 + 2l :

KECCAK-f [b] = KECCAK-p[b, 12 + 2l].

Consequently, the KECCAK-p[1600, 24] permutation, which underlies the six SHA-3 functions, is
equivalent to KECCAK-f [1600].

The rounds of KECCAK-f [b] are indexed from 0 to 11 + 2l . A result of the indexing within Step 2
of Algorithm 7 is that the rounds of KECCAK-p[b, nr] match the last rounds of KECCAK-f [b], or
vice versa. For example, KECCAK-p[1600, 19] is equivalent to the last nineteen rounds of
KECCAK-f [1600]. Similarly, KECCAK-f [1600] is equivalent to the last twenty-four rounds of
KECCAK-p[1600, 30]; in this case, the preceding rounds for KECCAK-p[1600, 30] are indexed by
the integers from −6 to −1.

4 SPONGE CONSTRUCTION

The sponge construction [4] is a framework for specifying functions on binary data with arbitrary
output length. The construction employs the following three components:

• An underlying function on fixed-length strings, denoted by f,
• A parameter called the rate, denoted by r, and
• A padding rule, denoted by pad.

The sponge construction is illustrated in Figure 7 below, adapted from [4].

Figure 7: The sponge construction: Z=SPONGE[f, pad, r](M, d) [4]

17

HMAC
• HMAC - Hash-based MAC - published in

RFC 2104.
• Improves on security of basic keyed hash.
• Security of HMAC depends only on

security of the hash function.
• Later we will see MACs based on block

ciphers.

• H[] is the hash function.
• K is the secret key, padded with zeros on

the left to match the hash block size.
• op is a constant (0x5c repeated).
• ip is a constant (0x36 repeated).

HMAC(K, M) = H[(K ⊕ op) || H[K ⊕ ip] || M]

Using an HMAC
Use an HMAC just as we would a keyed hash:

• Alice and Bob have secret key K
• Alice computes HMAC of message M

using key K and sends M and HMAC to
Bob.

• Bob computes HMAC of received message
using key K and checks it against the value
Alice sent; if they match, all is good!

Finished. See the website for exercises.

