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Authentication

• If Alice and Bob share a secret key and Alice 
sends Bob an encrypted message, can Bob 
assume the message is “authentic?” 

• What do we mean by authentic?



Consider
• A block cipher in ECB mode… 

An attacker could re-order blocks in the message 
without affecting Bob’s ability to decrypt it. 

• A block cipher in CFB or CTR mode, or a stream 
cipher… 

If the plaintext is highly structured, an attacker can 
modify the plaintext without decrypting the 
message.

In fact, it is possible to authenticate a message 
without encrypting the message. 

Authentication and Confidentiality are distinct.

Hash Functions
• Given a message M of arbitrary length, a hash function H 

produces a fixed size digest H(M). 

• It should be “easy” to compute H(M) for any M. 

• Hashes are an alternative to MACs (we’ll cover those later) 

(Merkle-Damgard Construction; from Wikipedia, public domain)



Uses for Hashes
• For authentication and integrity. 

• With encryption: append hash to M before encrypting. 

• Keyed hash: Alice and Bob share a secret authentication 
key K; Alice authenticates message M by appending 

hK = H(M || K) 

• Digital signature: Alice public-key encrypts the hash of M 
with her private key Apriv 

s = E[Apriv, H(M)]

Questions
Suppose Alice and Bob are using a keyed hash 
scheme with shared key KAB.  Alice sends Bob 
the message M along with H(M || KAB). 

1.How does Bob verify the message is really 
from Alice? 

2.How does Bob verify that the message has not 
been altered? 

Pre-Image Resistance

• For any given hash code h, it should be 
infeasible to construct an M such that H(M) = h. 

• In the keyed hash case, pre-image resistance 
prevents an attacker from recovering M||K, and 
thus K.



Weak Collision Resistance
• For any given message M, it should be infeasible to 

construct a different message N such that H(M) = H(N). 

• In digital signature applications, lack of weak collision 
resistance allows an attacker to find a different message 
with the same signature.
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Strong Collision Resistance
• It should be infeasible to construct a pair of different messages 

(M, N) such that H(M) = H(N). 

• Subtly different from weak collision resistance.   

• Prevents the following sort of attack:  

1. Eve constructs two messages with the same hash value.  
One is an I.O.U. for $10, the other is an I.O.U. for $10,000.   

• Eve gets Alice to sign the $10 I.O.U. 

• Eve insists on being paid her $10,000.

Suppose H() is a strongly collision resistant hash 
function that maps messages of arbitrary length to 
an n-bit hash value. 

1. Is it true that for all distinct messages x and y, 
H(x) ≠ H(y) ?



Simple Hash Functions
• Break the M into b-bit blocks M1, M2, …, Mn. 

h = M1 ⨁ M2 ⨁ … ⨁ Mn 

• A variation: let r(x, n) denote the left circular shift of x by 
n bits 

h = M1 ⨁ r(M2, 1) ⨁ … ⨁ r(Mn, n-1) 

• There are 2b possible hash codes, so if the message is 
modified or corrupted, there is probability 2-b that the 
hash code h will be unchanged.

• Unfortunately, neither of these schemes is collision 
resistant (weak or strong). 

• Suppose I construct the following messages: 

M  = M1, M2 

N = N1, N2, M1⨁M2⨁N1⨁N2 

N′ = N1, N2, r(M1 ⨁ r(M2, 1) ⨁ N1 ⨁ r(N2, 1), -2) 

• If H is the first simple hash, then H(M) = H(N). 

• If H is the variation, then H(M) = H(N′)

One More Example
• Another simple hash: let a message be 

represented by a list of integers 

M = (a1, a2, …, at) 

• Let N be a positive integer and define H(M) by 

h = (a1 + a2 + ⋯ + at) mod N 

• Is H pre-image resistant?



Brute Force Costs
For a hash with digest of size n: 

• Constructing a pre-image: 2n hash computations 

• Finding a weak collision: 2n hash computations 

• Finding a strong collision: 2n/2 hash computations 
(this is due to the birthday problem) 

For example, the MD5 message digest is 128 bits, so it 
should take 264 hash computations to find a strong 
collision pair.

MD5
• Ron Rivest,1992 

!
• Operates on 32-bit words 

with addition mod 232 

!
• Message processed in 

512-bit “chunks” broken 
into 16 32-bit words. 

• Basic function applied 64 
times per chunk. (from Wikipedia by Surachit; CC A-SA 3.0)

MD5 Attacks
• 2004 - Wang, Fang, Lai, and Yu demonstrate 

first practical collision 
• 2005 - Lenstra, Wang, de Weger produce 

colliding X.509 certificates 
• 2008 -  “normal” certificate converted to 

intermediate CA certificate 
• 2012 - Flame malware uses fraudulent MS code 

signing certificate; constructed using collision



The SHA Family

Algorithm Comments Reference

SHA-0 Had problems FIPS PUB 180 
(1993)

SHA-1 Corrected problems in 
SHA-0; similar to MD5

FIPS PUB 180-1 
(1995)

SHA-2 Family of algorithms 
(SHA-256, SHA-512, etc.)

FIPS PUB 180-2 
(2002)

SHA-3 Very different algorithm; 
selected in 2012

FIPS PUB 202 
(DRAFT)

Current Status
• SHA-0 and SHA-1 produce a 160 bit digest, so 

80 bits of security for strong collision 
resistance.   Too small?! 

• SHA-2 provides 256-, 384-, and 512-bit 
options.  No known attacks against SHA-2, but 
mathematics is similar to MD5, so NIST wanted 
an alternative...just in case. 

• SHA-3 selected in 2012 after an open 
competition.  It is quite different from SHA-2.

SHA-512

• Processes message in 1024-bit blocks. 
• Maintains 512-bit internal state. 
• Uses an 80-round function to update 

state for each block. 
• Digest is state after processing the last 

message block.



M2  1024 bitsM1  1024 bits M3 Padding Length 

F F FH0 (IV) + H1 + H2

+

Hn	


Digest

SHA-512 
Two full blocks and one partial block

Length field is 128 bits.	


Padding is a single 1 followed by 0s.	


Padding is always used.	


“+” is word-by-word mod 264.

The F-function
• The F-function consists of 80 rounds. 
• Each round involves basic boolean 

operations (AND, OR, XOR, NOT). 
• Each round incorporates a portion of the 

message block (Wt) and a constant (Kt).

The F-function provides good mixing.!
Each digest bit is a function of every input bit.

SHA-3
• “Sponge” construction 
• f-function operates on 1600-bit state 
• Message blocks xor-ed with state

 

  

    
 

        
         

 
      
 

      
  

 
             

             

         
         

        
  

  
 

       
    

 
   
    
    

 
 

 

 
         

 

3.4 Comparison with KECCAK-f 

The KECCAK-f family of permutations, originally defined in [8], is the specialization of the 
KECCAK-p family to the case that nr =12 + 2l : 

KECCAK-f [b] = KECCAK-p[b, 12 + 2l]. 

Consequently, the KECCAK-p[1600, 24] permutation, which underlies the six SHA-3 functions, is 
equivalent to KECCAK-f [1600]. 

The rounds of KECCAK-f [b] are indexed from 0 to 11 + 2l . A result of the indexing within Step 2 
of Algorithm 7 is that the rounds of KECCAK-p[b, nr] match the last rounds of KECCAK-f [b], or 
vice versa. For example, KECCAK-p[1600, 19] is equivalent to the last nineteen rounds of 
KECCAK-f [1600]. Similarly, KECCAK-f [1600] is equivalent to the last twenty-four rounds of 
KECCAK-p[1600, 30]; in this case, the preceding rounds for KECCAK-p[1600, 30] are indexed by 
the integers from −6 to −1. 

4 SPONGE CONSTRUCTION 

The sponge construction [4] is a framework for specifying functions on binary data with arbitrary 
output length. The construction employs the following three components: 

• An underlying function on fixed-length strings, denoted by f, 
• A parameter called the rate, denoted by r, and 
• A padding rule, denoted by pad. 

The sponge construction is illustrated in Figure 7 below, adapted from [4]. 

Figure 7: The sponge construction: Z=SPONGE[f, pad, r](M, d) [4] 

17  



HMAC
• HMAC - Hash-based MAC - published in 

RFC 2104. 
• Improves on security of basic keyed hash. 
• Security of HMAC depends only on 

security of the hash function. 
• Later we will see MACs based on block 

ciphers.

• H[ ] is the hash function. 
• K is the secret key, padded with zeros on 

the left to match the hash block size. 
• op is a constant (0x5c repeated). 
• ip is a constant (0x36 repeated).

HMAC(K, M) = H[ (K ⊕ op) || H[K ⊕ ip] || M ] 

Using an HMAC
Use an HMAC just as we would a keyed hash: 

• Alice and Bob have secret key K 
• Alice computes HMAC of message M 

using key K and sends M and HMAC to 
Bob. 

• Bob computes HMAC of received message 
using key K and checks it against the value 
Alice sent; if they match, all is good!



Finished.  See the website for exercises.


