Lecture 8: Malicious Software III

Summary

This is the last lecture on Malicious Software. We will discuss various payloads that may be carried and delivered by malware and approaches to protecting against malware.

Payloads

Reference: P&P, Sections 3.3 and 3.4

System Damage

Example: Chernobyl Virus (1998)

Example: CryptoLocker (2013)

Rootkits

Kernel-mode vs. user-mode

Function Hooking

Detecting

Example: Sony BMG Copy Protection (2005)

Example: AFX Windows Rootkit (2003)

Botnets

Privacy Invasive Software

Protection Against Malware

Reference: P&P Sections 3.3 and 3.5

Deploying Systems

Detect, Identify, Remove

Detection

Signature-based scanners

Heuristics-based scanners

Perimeter Scanners — Intrusion Detection Systems

"Best Pratices"

Diversity of Systems

Robustness of Software

Limit user privilege

Improve authentication

Monitor networks

Use malicious software detection and removal tools

Prepare for recovery

Developing Systems – Software Engineering

Design

Modularity

Encapsulation

Information Hiding

Mutual Suspicion

Peer Review

Review

Walk-through

Inspection

Other Techniques

Hazard Analysis

Testing

Static Analysis

Configuration Management

Exercises

P&P, Chapter 3, Exercises 11, 12, 15.

Suppose we have a program D that is claimed to be able to determine whether a given input program P is a virus or not, returning "True" if P is a virus and "False" if it is not. Consider the following program:

```
Program V {
    main {
        if D(V) then
           goto next;
        else
           infect-executable;
    }
next:
}
```

The module infect-executable searches the system for executable programs that can be infected and replicates the program *V* to all such programs. Can *D* decide whether or not *V* is a virus?

You find a USB stick in a campus parking lot. To what threats might you expose your computer if you plug-in the USB stick? What steps could you take to mitigate the threats?