
CMSC 426/626 - Fall 2014 Lecture 5 Page �1

Lecture 5: Stack-Buffer Overflows II!"
Summary""
In this lecture, we cover some of the major defenses against stack-buffer overflow
attacks.""
Stack-Buffer Overflow Protection""
Reference: This material is not covered in P&P. A good reference is Stallings & Brown,
Computer Security: Principles and Practice, Section 10.2.""
Buffer overflow recap!"

Attacker must:""
1. Overwrite values on stack""""
2. Execute the code on the stack.""""
3. Predict location of code in memory."""

Modern systems protect against these things.""
Stack Protection""

Goal is to prevent attacker from overwriting anything important (esp. return address)""
Random Canaries""

Random word on stack, typically below return address.""
Additional code checks for changes in “canary” value""
Example: GCC stack protector; controlled through command line argument""

 -fstack-protector Protect some vulnerable functions"

 -fstack-protector-all Protect all functions"

 -fstack-no-stack-protector Disable stack protection

CMSC 426/626 - Fall 2014 Lecture 5 Page �2

"

⁞

Location of a StackGuard Random Canary""
Some weaknesses with random canaries""

Local variables may not be protected"""""
Function arguments may not be protected, at least within the vulnerable
function"""""
Attacker may be able to retrieve or guess random canary value (low entropy)""

Some bits of canary may be derived from “guessable” sources""
Stack Execution Protection!"

Prevent execution of code on the stack""
Supported by CPU (some alternatives when there is no CPU support)"

Function Arguments —

Return Address 0xbffff498

Saved Frame Pointer —

Saved Registers —

Random Canary 0xa18a6f6c

0x00000000

0x00000000

0x00000000

Start of char check[64] 0x00000000

CMSC 426/626 - Fall 2014 Lecture 5 Page �3

"
On Linux, stack is non-executable by default; controlled by one bit in the ELF
executable file header""

-zexecstack" linker option to enable execution of stack""
Some weaknesses with stack execution protection""

CPU may not support it (older CPUs) or it may be disabled in BIOS""""
May not be enabled in virtualized environment""""
Attackers have developed workarounds""

Return-to-libc / return-to-system""
Attacker knows address of library function, e.g. execve()""""
Attacker overwrites return address with library function address""""
Attacker “fixes up” stack to that it (a) has the structure the library function
expects, and (2) provides “useful” arguments to the library function""""
Does all this with a buffer overflow!""

Address Space Layout Randomization""
Goal is to defeat “classic” buffer overflow as well as return-to-libc""

Randomly change the location of library/system functions every time the system
is booted.""
Randomly change stack location each time a program is executed""
Randomly change location of buffers malloc()-ed on the heap each time a
program is executed"

CMSC 426/626 - Fall 2014 Lecture 5 Page �4

"""
Example: Ubuntu implements ASLR on multiple components""

Stack ASLR""""
Libs/MMAP ASLR""""
Exec ASLR""""
Brk ASLR""""
Virtual Dynamically Liked Shared Object (VDSO) ASLR""""

Write good code!""
Exercises""
1. Consider exercise 3 from lecture 4. Will StackGuard protect against this

vulnerability? Why or why not?"
2. When might a programmer legitimately want to enable execution of code on the

stack? Research this and find (or develop) a specific example."
3. Review some of the recent vulnerability announcements on the National

Vulnerability Database (http://web.nvd.nist.gov/view/vuln/search). How many are
stack-based buffer overflows? What types of buffer overflows, other than stack-
based, do you see? Choose one other type of buffer overflow and research how it
works in general.

http://web.nvd.nist.gov/view/vuln/search

