
CMSC 426/626 - Fall 2014 Lecture 4 Page �1

Lecture 4: Stack-Buffer Overflow!"
Summary""
Stack-buffer overflows (and buffer overflows in general) are a fundamental class of
security vulnerabilities in software. Generally caused by poor sanitization of user input,
they may allow an attacker to run arbitrary code on a target machine. In this lecture, we
focus on the mechanisms of a buffer-overflow attack; in the next lecture, we will cover
some defenses against buffer overflow vulnerabilities. ""
Stack-Buffer Overflow""
Reference: This material is not covered in P&P. A good reference is Stallings & Brown,
Computer Security: Principles and Practice, Section 10.1.""
Basic Overflow Refresher (see slides from Lecture 2)"""
Introduction to the in-out Package!""
Why is the in/out package “interesting” from a security perspective?!"

Owner and permissions"""""
User Input"""""

(Very) Basic fuzzing with Python!"""""
Find the vulnerability!"

Which function in the in/out package causes the buffer overflow?""""

CMSC 426/626 - Fall 2014 Lecture 4 Page �2

Which C library function should the programmer not have used and why? What is
an alternative that would have been better?""
What does the stack look like (roughly) in the vulnerable function?""""""""""

Exploitation Challenges!"
Knowledge of stack frame location""

Where exactly is the functions return address?"""""
" Where exactly can we locate malicious code?" """"

String processing""
Malicious code must survive string processing""""""

Exploit Components!"
There are three components of a basic stack-buffer overflow attack. All three
components are part of a single string that will be passed to the vulnerable program
as user input.""
Shellcode (see sample)""
" What is the purpose of shellcode? " ""

CMSC 426/626 - Fall 2014 Lecture 4 Page �3

"""
What are the two major constraints facing a shellcode writer?"""""""

" "
Return Address""
" Why might an attacker include multiple copies of the return address?" """"""
NOP Sled""
" What is a NOP?" """""
" What is the purpose of the NOP sled (block of NOPs before the shellcode)?" """""

Example: signin exploit walk-through"""
Exercises""
1. For each of the following unsafe C library functions, find a safe alternative:""
Unsafe Function Safe Alternative

gets(char *str)

sprintf(char *str, char *format, …)

CMSC 426/626 - Fall 2014 Lecture 4 Page �4

"
2. Consider the shellcode used in class (it is available on the website — see Lecture 4).
It is assumed that the call to exec() will be successful and not return. Suppose,
however, that there is an error, and the call does return. The shellcode should exit
gracefully by calling exit(0). Extend the shellcode with the assembler instructions
required to implement the call to exit(0). ""
3. This is an example of a different type of buffer overflow vulnerability. How can one
get the program to grant “root privileges” without knowing the correct password? (code
example from www.thegeekstuff.com)""
#include <stdio.h>!
#include <string.h>!"
int main(void)!
{!
 int pass = 0;!
 char buff[15];!"
 printf("Enter the password: ");!
 gets(buff);!"
 if(strcmp(buff, "thegeekstuff")) {!
 printf ("\nWrong Password\n");!
 } else {!
 printf ("\nCorrect Password\n");!
 pass = 1;!
 }!"
 if(pass) {!
 /* Now Give root or admin rights to user*/!
 printf ("\nRoot privileges given to the user\n");!
 }!"
 return 0;!
}!

strcat(char *dest, char *src)

strcpy(char *dest, char *src)

vsprintf(char *str, char *fmt, va_list ap)

Unsafe Function Safe Alternative

http://www.thegeekstuff.com

