
CMSC 426/626 - Fall 2014 Password Recovery Lab Page �1

Password Recovery Lab
CMSC 426/626 – Computer Security

Password-Based Authentication
The security of an operating system begins with establishing the identity of its users. By far the
most common method for authenticating users is the use of passwords. When a users is enrolled
in a system, they choose – or are given – a user name and password. To log in, the user provides
both her user name and password, and the system determines whether the correct password was
entered for the given user name.

In most cases, the system does not keep a list of the users' passwords, but rather stores a hash of
each user's password (e.g. using SHA-256 or MD5). For example, suppose a particular system
stores MD5 hashes of users passwords; then if my user name is topha and my password is
tophatime, the user database would contain a line like:

 topha:a715b1df45a28985727c8d40542630c1

Now, even if an attacker acquires the password file, he or she will not immediately learn my
password or the passwords of the other users. Unfortunately, if users pick poor quality
passwords, the attacker may still be able to recover many of the passwords.

The RockYou Compromise
RockYou is a developer of games for social media. In 2009, hackers acquired the password list
for 32 million RockYou users – and the passwords were not hashed. The entire list was made
public, providing a unique look at how users actually choose passwords. The ten most
frequently used passwords were:

 123456
 12345
 123456789
 password
 iloveyou
 princess
 1234567
 rockyou
 12345678
 abc123

Not only does the RockYou compromise show us how weak many passwords are, but it also
serves as a dictionary for password guessing attacks. That is, the 14 million unique passwords
from RockYou are a pretty good set to try if we want to attack a system.

CMSC 426/626 - Fall 2014 Password Recovery Lab Page �2

Basic Password Guessing Attack
We will use the RockYou list to implement our own off-line password guessing attack. By off-
line we mean, an attack against compromised password hashes, as opposed to an on-line attack,
in which we actually try to login to a system remotely. So, suppose we have one or more target
hashes and we know what hash algorithm was used to produce them. Then we want to hash
every password in the RockYou list and see if any of them match our targets.

To implement our attack, we first need to know how to compute hashes in Python. The following
will compute the SHA-256 hash of the string tophatime:

 >>> from Crypto.Hash import SHA256
 >>> pwd = 'tophatime'
 >>> sha2 = SHA256.new(pwd)
 >>> print sha2.hexdigest()

Similarly, the MD5 hash can be computed as follows:
 >>> from Crypto.Hash import MD5
 >>> pwd = 'tophatime'
 >>> md5 = MD5.new(pwd)
 >>> print md5.hexdigest()

Verify that you can correctly compute the SHA-256 and MD5 hashes in Python by computing
both hashes for the password 123456, the most frequently used password in the RockYou list.

The SHA-256 hash of 123456 is:

8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92

The MD5 hash of 123456 is:

e10adc3949ba59abbe56e057f20f883e

Now, suppose you have have recovered a password file from a system that you know uses the
MD5 hash algorithm and you see that the administrator's password hash is:

 4f59a144a9c2d932f95a3c6160698c5f

You will try to recover the password by hashing the passwords in the RockYou list and seeing if
any match the target hash. To do so, you must be able to read the file of passwords one line at at
time, hash each line, and compare the result to the target hash. To get you started, here is some
code that will open the file and read the passwords one at a time:

 >>> infile = open('rockyou.100000.txt')
 >>> for line in infile:
 ... line = line.rstrip('\n') #remove newline
 ... # Now compute the hash of line
 ... # Compare the hash with the target
 ... # Print the password if the hashes match

CMSC 426/626 - Fall 2014 Password Recovery Lab Page �3

Note 1: You must use rstrip() to remove the newline character – if you skip this step, you
will not find the correct password.
Note 2: in the sample code, we used the file rockyou.100000.txt which contains only the
top 100,000 passwords from the RockYou list.

EXERCISE 1: Use the first 100,000 items in the RockYou list (contained in file rockyou.
100000.txt) to find the administrator's password. You know that the system uses an MD5
hash.

A More Efficient Attack
Although our attack works, it is not terribly efficient, especially if we have multiple target hashes
– every time we run the attack, the hashes of the passwords have to be re-computed. It would
make more sense to compute the hashes once, save them, and re-use them.

The file rockyou.100000.hash contains the SHA-256 hashes and corresponding password
for the first 100,000 passwords in the RockYou list. There are several ways we could use this list
efficiently, but one in particular is to load the hashes and passwords into a Python dictionary. A
dictionary is the same thing as a hash table or associative array in other languages: it is an array
that is indexed by strings rather than position.

We can load the RockYou passwords and hashes into a dictionary as follows:
 >>> infile = open('rockyou.100000.hash')
 >>> pwtable = {} # an empty dictionary
 >>> for line in infile:
 ... # remove \n and split into hash and passwor
 ... fields = line.rstrip('\n').partition(' ')
 ... # add the hash as a keyword with the password
 ... # as its value
 ... pwtable[fields[0]] = fields[2]

Now we can easily see if any given password hash is in our list:

 >>> target =
'c09e3688481523bd55044838800156be38126d5a01a58ba04094cdce3002e023'
 >>> target in pwtable
 True
 >>> print pwtable[target]
 '4peace'

EXERCISE 2: You have gained access to the following password file:
root:c44a8bae970ecc11fb01d11be9886377c1ac9b8d2ff450d5ebefc5b78eaa95ef
sam:95c0d6e7a0e1ecf1dbd33ed89fedff8b1ffb3dbfb7c6288a6c47f0bec35e3124
topha:2415224ff13cef4a85213e06958fa0c5393e83fb631bf75c4fc38773e4fea1f5
sally:035440b51fb1a8a4f910567d9f7292f6fb55230f037cf0be7b8c16c649e416da

Recover as many of the passwords as you can. Which users' password could you not recover?
Why couldn’t you recover it?

CMSC 426/626 - Fall 2014 Password Recovery Lab Page �4

Salted Hashes
The reason we can perform the basic password guessing attack so efficiently is that a given
password always hashes to the same value. Thus I can build a dictionary once and use it over
and over to recover different passwords. Salting is a technique that makes it more costly for an
attacker to guess passwords. Rather than hashing just a user's password, we hash the password
along with a small amount of random information, called the salt. The salt is different for each
user, so even if several users have the same passwords, their hashes will be different. Also, an
attacker needs to know a users's salt before they can attempt to guess their password.

Suppose now you have acquired a salted password file. The salt values are given in the file and
the hash value is just the MD5 hash of the salt concatenated with the password:

root:6954222:d98f1c1410daefd5a7efa893ae7bf237
sam:1258244:e8c101595f2701d59626b68d9368b592
topha:11030922:40f1b3e282ca6f3a4f53a856d742760b
sally:13064284:75b363a560580edc76b0451c2b3a6e8b

Now to try recover one password I have to run through the entire password list:

 >>> salt = '6954222'
 >>> target = 'd98f1c1410daefd5a7efa893ae7bf237'
 >>> infile = open('rockyou.100000.txt', 'r')
 >>> for line in infile:
 ... line = line.rstrip('\n')
 ... md5 = MD5.new(salt+line)
 ... if md5.hexdigest() == target:
 ... print 'password is: ' + line + '\n'
 ... break
 password is: timberlake

EXERCISE 3: Recover the remaining three passwords from their salted hashes.

Lab Assignment
Your assignment for this lab is to recover as many passwords as possible from a given set of
hashes using only code that you have written. Using any password cracking package —
commercial or open source — will be considered a violation of course Academic Integrity
policies.

The target hashes are provided, in Python format, in the file hashes.py. Within the file, they
are divided into three groups:

1. Unsalted hashes of passwords based on the RockYou dictionary
2. Salted hashes of passwords based on the RockYou dictionary
3. Hashes of five-character random passwords (only needed by Grad Students)

CMSC 426/626 - Fall 2014 Password Recovery Lab Page �5

All of the hashes have been computed using the SHA-256 implementation in the PyCrypto
Python library. For the salted hash data, the salt and the hash are separated by a semicolon, with
the salt given first. To compute the salted hashes, the salt and password were combined by
concatenating the salt and the password (e.g. sha.update(salt + pw)).

For both the salted and unsalted hash groups, some of the passwords are straight from the first
100,000 entries of the RockYou dictionary, some are words from RockYou with a digit appended
or prepended, and some are concatenations of two RockYou words. In all cases, only words
from the first 100,000 entries of the RockYou dictionary have been used.

Lab Submission and Grading
Your lab must be submitted on Blackboard and should include the following:

1. A brief write-up
2. The password recovery code that you wrote (Python, Java, C, or C++)

The write-up must describe your approach to the password recovery problem and include all
recovered passwords. The lab can be completed entirely in Python, and Python is preferred, but
you may submit code in Java, C, or C++. In particular, you may choose to use a compiled
language for efficiency reasons.

Grading of the lab will depend on both the number of passwords recovered and a review of your
code. There is a minimum number of passwords you must recover to earn an A, B, or C:

GRADING CRITERIA FOR UNDERGRADUATE STUDENTS (CMSC 426)
Important: These are maximum grades. Grades may be reduced if the code submitted does not
support the claimed password recoveries.

Numer of
Passwords
Recovered

Highest
Possible
Grade

Rationale

5 C
Among the group one and two hashes, there are five for which the
passwords is a RockYou word. You must recover these five passwords
to receive a C.

7 B

Among the group one and two hashes there are six for which the
password is either a RockYou word with a digit appended or prepended
or the concatenation of two RockYou words. You must recover at least
two of these more difficult passwords to receive a B.

9 A

Among the group one and two hashes there are six for which the
password is either a RockYou word with a digit appended or prepended
or the concatenation of two RockYou words. You must recover at least
four of these more difficult passwords to receive an A.

10 - 11 Extra
Credit

Extra credit will be granted for recovering additional passwords.

CMSC 426/626 - Fall 2014 Password Recovery Lab Page �6

Additional Assignment for CMSC 626 (Graduate Students)
Lucky Grad Students — you get to learn some more about TMTOs! Undergraduates may also complete
this task for Extra Credit. You will finish a TMTO attack to recover some of the five-character random
passwords (group three).

You are provided with the following components of a partially-completed TMTO attack:
1. The program build_table.py that is used to build the TMTO tables
2. A zip file catalog.zip that contains 1024 already-built TMTO tables

You must write the program that carries out the actual TMTO attack (the every-time work) and apply it to
recover as many passwords as possible from the hashes in group three (five-character random passwords).
Grading for graduate students will depend on the number of five-character random passwords recovered
in addition to the number of group one and two passwords recovered:

GRADING CRITERIA FOR GRADUATE STUDENTS (CMSC 626)
Important: These are maximum grades. Grades may be reduced if the code submitted does not
support the claimed password recoveries.

Graduate students must include the group three passwords they recovered in their lab write-up
and turn-in their TMTO code along with the write-up and any other code written to recover
password from group one, two, or three.

Number of
Group 1 and 2
Passwords
Recovered

Number of
Group 3
Passwords
Recovered

Highest
Possible
Grade

Rationale

5 0 C
Recovery of the simple dictionary passwords from
groups one and two is the minimal acceptable
accomplishment for graduate students.

7 10 B
Graduate students must perform at the
undergraduate B level plus have moderate success
against the group three hashes in order to earn a B.

9 20 A
Graduate student must perform at the undergraduate
A level plus have a high level of success against the
group three hashes in order to earn an A.

10 - 11 25 - 50 Extra
Credit

Extra credit will be granted for recovering additional
passwords.

