
CMSC 426/626 Labs 1

SQL Injection Attack Lab
CMSC 426/626

Based on SQL Injection Attack Lab — Using Collabtive
Adapted and published by Christopher Marron, UMBC

Copyright c© 2014 Christopher Marron, University of Maryland Baltimore County.
Adapted from SQL Injection Attack Lab — Using Collabtive, available at
http://www.cis.syr.edu/˜wedu/seed/all_labs.html.
Copyright c© 2006 - 2013 Wenliang Du, Syracuse University.
The development of this document is/was funded by three grants from the US National Science Foundation:
Awards No. 0231122 and 0618680 from TUES/CCLI and Award No. 1017771 from Trustworthy Computing.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation. A copy
of the license can be found at http://www.gnu.org/licenses/fdl.html.

1 Overview

SQL injection is a code injection technique that exploits the vulnerabilities in the interface between web
applications and database servers. The vulnerability is present when a user’s input is not correctly checked
within the web application before being sent to the back-end database servers.

Many web applications accept inputs from users and use these inputs to construct SQL queries in order
to access or update information in databases. When the SQL queries are not carefully constructed, SQL
injection vulnerabilities can result. SQL injection attacks are one of the most frequent attacks on web
applications.

For this lab, we modified a web application called Collabtive, disabling several countermeasures
implemented by Collabtive. As a result, we created a version of Collabtive that is vulnerable to
SQL injection attacks. Although our modifications are artificial, they are representative of mistakes made
by many web developers. Your goals in this lab are to exploit the SQL injection vulnerabilities, demonstrate
the damage that can be achieved by the attacks, and master techniques that can help defend against such
attacks.

Figure 1: Exploits of a Mom (http://xkcd.com/327)

CMSC 426/626 Labs 2

2 Lab Environment

The name of the VM image that supports this lab is called SEEDUbuntu12.04, built in September 2013.
If you have a pre-built VM image prior to SEEDUbuntu12.04, you must download the new version from
the SEED web site (http://www.cis.syr.edu/˜wedu/seed/).

2.1 Environment Configuration

The lab requires three software packages, all of which are already installed in the provided VM image:

1. The Firefox web browser

2. The Apache web server

3. The Collabtive project management web application

In Firefox, you may want to use the LiveHTTPHeaders extension to inspect the HTTP requests and
responses. The pre-built Ubuntu VM image provided to you has the Firefox web browser with the required
extensions already installed.

Starting the Apache Server. The Apache web server is also included in the pre-built Ubuntu image.
However, the web server is not started by default. You need to first start the web server using the following
command:

% sudo service apache2 start

The Collabtive Web Application. We use an open-source web application called Collabtive in
this lab. Collabtive is a web-based project management system. It is already installed and configured
in the pre-built Ubuntu VM image. We have also created several user accounts on the Collabtive
server. To see all the users’ account information, first log in as the admin (username admin, password
admin). Once logged in as admin, other users’ account information can be obtained from the User’s
Account Information Project on the front page.

DNS Configuration. We have configured the Collabtive server to use the following URL:

URL Description Directory
http://www.sqllabcollabtive.com Collabtive /var/www/SQL/Collabtive/

The URL is only recognized from inside of the virtual machine, because we have modified the /etc/hosts
file to map the domain name of the URL to the virtual machine’s local IP address (127.0.0.1). You
may map any domain name to a particular IP address by editing /etc/hosts. For example you can map
http://www.example.com to the local IP address by appending the following entry to /etc/hosts:

127.0.0.1 www.example.com

If your web server and browser are running on two different machines, you must modify /etc/hosts on
the browser’s machine to map the domain name to the web server’s IP address (not 127.0.0.1).

CMSC 426/626 Labs 3

2.2 Turn Off the Countermeasures

PHP provides a mechanism called ”magic quotes” to automatically defend against SQL injection attacks
(this protection method is deprecated after PHP version 5.3.0). We must disable magic quotes for the first
two lab tasks:

1. Go to /etc/php5/apache2/php.ini.

2. Find the line: magic quotes gpc = On.

3. Change it to this: magic quotes gpc = Off.

4. Restart the Apache server by running "sudo service apache2 restart".

3 Lab Tasks

3.1 Task 1: SQL Injection Attack on SELECT Statements

In this task, you need to log into Collabtive at www.sqllabcollabtive.com, without providing a
password. You can achieve this using SQL injection. Normally, before users start using Collabtive, they
need to login using their user names and passwords. Collabtive displays the following login window
asking the user to input a username and password.

Figure 2: The login window

User authentication is implemented in include/class.user.php under the Collabtive root direc-
tory (/var/www/SQL/Collabtive/). It takes the user-provided login data and determines whether it
matches the user name and password fields of any record in the user database. If there is a match, the user
has provided a correct user name and password combination and should be allowed to login. Like most
web applications, PHP programs interact with their back-end databases using the standard SQL language.
In Collabtive, the following SQL query is constructed in class.user.php to authenticate users:

$pass = sha1($pass);

$sel1 = mysql_query ("SELECT ID, name, locale, lastlogin, gender,
FROM user
WHERE (name = ’$user’ OR email = ’$user’) AND pass = ’$pass’");

CMSC 426/626 Labs 4

In the above SQL statement, user is the name of the SQL table that holds the user data. The variable $user
holds the string typed in the Username textbox, and $pass holds the string typed in the Password
textbox. User’s inputs in these two textboxs are placed directly in the SQL query string. If the SELECT
statement returns at least one result, the user is allowed to login.

SQL Injection Attacks on Login: There is a SQL injection vulnerability in the above query. Can you
take advantage of this vulnerability to achieve the following objectives?

• Task 1.1: Can you log into another person’s account without knowing the correct password?

• Task 1.2: Can you find a way to modify the database (still using the above SQL query)? For example,
can you add a new account to the database, or delete an existing user account? Obviously, the above
SQL statement is a query-only statement, and cannot update the database. However, using SQL
injection, you can turn the above statement into two statements, with the second one being the update
statement. Please try this method, and see whether you can successfully update the database.

To be honest, we are unable to achieve the update goal. This is because of a particular defense
mechanism implemented in MySQL. In the report, you should show us what you have tried in order
to modify the database. You should find out why the attack fails and what mechanism in MySQL
has prevented such an attack. You may look up evidence (second-hand) from the Internet to support
your conclusion. However, first-hand evidence will get more points (use your own creativity to find
first-hand evidence). If you find ways to succeed in the attacks, you will be awarded bonus points.

3.2 Task 2: SQL Injection on UPDATE Statements

In this task, you need to make an unauthorized modification to the database. Your goal is to modify another
user’s profile using SQL injection. In Collabtive, if users want to update their profiles, they can go to
My account, click the Edit link, and then fill out a form with the new profile information. When a user
sends the update request to the server, an UPDATE SQL statement is constructed in include/class.
user.php. The purpose of this statement is to modify the current user’s profile information in the users
table. There is a SQL injection vulnerability in the SQL statement. Find the vulnerability and use it to do
the following:

• Change another user’s profile without knowing his or her password. For example, if you are logged
in as Alice, your goal is to use the vulnerability to modify Ted’s profile information, including Ted’s
password. After the attack, you should be able to log in to Ted’s account.

3.3 Task 3: Countermeasures

The fundamental problem of SQL injection vulnerability is the failure to separate code from data. When
constructing a SQL statement, the program (e.g. PHP program) knows what part is data and what part is
code. Unfortunately, when the SQL statement is sent to the database, the boundary between data and code
may be blurred, allowing a malicious user to insert SQL code through a data field. To solve this problem,
it is important to ensure that the views of the boundaries are consistent in the server-side code and in the
database. There are various ways to achieve this.

• Task 3.1: Escaping Special Characters using magic quotes gpc. In the PHP code, if a data
variable is the string type, it needs to be enclosed within a pair of single quote symbols (’). For
example, in the SQL query listed above, we see name = ’$user’. The single quotes surrounding

CMSC 426/626 Labs 5

$user are an attempt to separate the data in the $user variable from the code. Unfortunately,
this separation will fail if the contents of $user include any single quote. Therefore, we need a
mechanism to tell the database that a single quote in $user should be treated as part of the data, not
as a special character in SQL. All we need to do is to add a backslash (\) before the single quote.

PHP provides a mechanism to automatically add a backslash before single-quote (’), double quote
("), backslash (\), and NULL characters. If this option is turned on, all these characters in the inputs
from the users will be automatically escaped. To turn on this option, go to /etc/php5/apache2/
php.ini, and add magic quotes gpc = On (the option is on by default in the VM provided to
you; you should have turned it off as part of the lab environment configuration). Remember, if you
update php.ini, you need to restart the Apache server by running "sudo service apache2
restart"; otherwise, your change will not take effect.

Turn the magic quote mechanism on and off and see how it helps protect against SQL injection attacks.

Note that starting in PHP 5.3.0 (the version in our provided VM is 5.3.10), the feature has been
deprecated1 for several reasons including:

– Portability: Assuming it to be on, or off, affects portability. Most code must use the function
get magic quotes gpc() to check the state and adjust accordingly.

– Performance and Inconvenience: not all user inputs are used for SQL queries, so mandatory
escaping of all data not only affects performance, but also become annoying when some data are
not supposed to be escaped.

• Task 3.2: Escaping Special Characters using mysql real escape string. A better way to
escape data to defend against SQL injection is to use database specific escaping mechanisms in-
stead of relying upon features like magical quotes. PHP provides an escaping mechanism, called
mysql real escape string(), which prepends backslashes to a few special characters, in-
cluding \x00, \n, \r, \, ’, " and \x1A.

Use this function to fix the SQL injection vulnerabilities identified in the previous tasks. You should
disable the other protection schemes described in the previous tasks before working on this task. Note:
mysql real escape string has been deprecated since PHP 5.5.0.

• Task 3.3: Prepare Statement. A more general solution to separating data from SQL logic is to tell
the database exactly which part is data and which is code. PHP provides mysqli and the prepare
mechanism for this purpose. mysqli is one of two preferred methods for protecting against SQL
injection attacks in PHP code (the other is the PDO MYSQL extension).

1In the process of authoring computer software, its standards, or documentation, deprecation is a status applied to software
features to indicate that they should be avoided, typically because they have been superseded. Although deprecated features remain
in the software, their use may raise warning messages recommending alternative practices, and deprecation may indicate that the
feature will be removed in the future. Features are deprecated — rather than immediately removed — in order to provide backward
compatibility, and to give programmers who have used the feature time to bring their code into compliance with the new standard.

CMSC 426/626 Labs 6

$db = new mysqli("localhost", "user", "pass", "db");
$stmt = $db->prepare("SELECT ID, name, locale, lastlogin

FROM users
WHERE name=? AND age=?");

$stmt->bind_param("si", $user, $age);
$stmt->execute();

// The following two functions are used to retrieve the
// results of the SELECT statement
$stmt->bind_result($bind_ID, $bind_name, $bind_locale,

$bind_lastlogin);
$chk=$stmt->fetch();

Parameters for the mysqli() constructor can be found in config/standard/config.php.
Using the prepare statement mechanism, we can divide the process of sending a SQL statement to the
database into two steps. The first step is to send the code, i.e., the SQL statement without the data. This
is the prepare step. The second step is to send the data to the database using bind param(). The
database will treat everything sent in this step as data, not code. The first argument of bind param
indicates the types of the bound variables; in the example above, "si" indicates that the first param-
eter ($user) has a string type, and the second parameter ($age) has an integer type. Valid types are
“i” (integer),“d” (double), “s” (string), and “b” (blob).

If we wish to retrieve the results of a SELECT statement, we also need to bind variables to the selected
fields and then fetch the results into the bound variables.

Use the prepare statement mechanism to fix the SQL injection vulnerabilities in the Collabtive
code.

4 Helpful Hints

Print out debugging information. When we debug traditional programs (e.g. C programs) without using
any debugging tool, we often use printf() to print out some debugging information. In web applications,
whatever is printed out by the server-side program is actually displayed in the web page sent to the users;
the debugging printout may mess up the web page. There are several ways to solve this problem. A simple
way is to print all the information to a file. For example, the following code snippet can be used by the
server-side PHP program to print the value of a variable to a file.

$myFile = "/tmp/mylog.txt";
$fh = fopen($myFile, ’a’) or die("can’t open file");
$Data = "a string";
fwrite($fh, $Data . "\n");
fclose($fh);

A useful Firefox Add-on. Firefox has an add-on called "Tamper Data", it allows you to modify each
field in the HTTP request before the request is sent to the server. For example, after clicking a button on a
web page, an HTTP request will be generated. However, before it is sent out, the "Tamper Data" add-on

CMSC 426/626 Labs 7

intercepts the request, and gives you a chance to make an arbitrary change on the request. This tool is quite
handy in this lab.

The add-on only works for Firefox versions 3.5 and above. If your Firefox has an earlier version, you
need to upgrade it to use this add-on. In our most recently built virtual machine image (SEEDUbuntu12.04),
Firefox is already upgraded to version 23.0, and the "Tamper Data" add-on is already installed.

5 Submission

You must submit a detailed lab report to describe what you have done and what you have observed. You
may include details using LiveHTTPHeaders, Wireshark, or screen shots. The lab write-up must be
typed and well-written, using proper English language and grammar. In particular, your lab write-up must
include the following information:

Task 1.1 input to the login screen that results in a successful injection attack; written description of how the
injection attack was discovered and why it succeeds.

Task 1.2 user input with which you attempted to modify the database; written description of countermea-
sures that prevented your attack from succeeding or description of why your attack succeeded.

Task 2 input to the profile update screen that results in a successful injection attack; written description of
how the injection attack was discovered and why it succeeds.

Task 3.1 results of running your injection attacks from Tasks 1.1 and 2 with “magic quotes” enabled.

Task 3.2 results of running your injection attacks from Tasks 1.1 and 2 using mysql real escape string;
code excerpts showing your use of the function in the Collabtive PHP code.

Task 3.3 results of running your injection attacks from Tasks 1.1 and 2 using mysqli.

In addition to the written lab report, you must turn in your code for class.user.php implementing
the mysqli approach from Task 3.3.

