CMSC421. Spring 2003. All sections. Homework I You must do this HW on your own

1. Five jobs are waiting to be run. Their expected run times are $9,6,3,5$ and X. In what order should they be run in order to minimize average waiting time? (Hint: Though the answer is simple, you need to consider all cases).
2. This problem deals with real time systems with N CPU's. Events that real time systems have to respond to are classified as periodic or aperiodic. Consider the first case where jobs occur at regular intervals: Let there be m periodic events and event i occurs with period P_{i} and C_{i} seconds of CPU time are required to handle each event, derive an inequality that can be used to show the conditions under which the periodic load can be handled. (Hint: Define CPU utilization, ignore context switch overhead.)
3. For the bakery algorithm we define a processor is in the bakery from when it sets choosing $[\mathbf{i}]=$ false till it fails or leaves the critical section. The two lines before it is in the CS it called as being in the doorway. Prove the following assertions:
a. Assertion 1: If processors i, k are in the bakery and i entered the bakery before k entered the doorway, then number $[\mathrm{i}]<$ number $[\mathrm{k}]$.
b. Assertion 2: If processor i is in its critical section, processor k is in the bakery, and k.not equal. i, then (number[i] , i) < (number[k], k).
4. A computer has six tape drives, with n processes competing for them. Each process may need two drives. For which values of n is this system safe?
5. Consider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold:
a. The max need of each process is between 1 and m resources
b. The sum of all max needs is less than $m+n$
6. If an instruction takes 1 microsec and a page fault takes an extra n microsec, derive a formula for the effective instruction time if page faults occur every k instructions (on average).
7. The figure below shows a virtual address space from 0 to 64 K and 32 K of physical memory. There are 16 pages and 8 frames and transfers between memory and disk are in pages. Give the physical address corresponding to the following virtual addresses: a) 20 b) 4100 c) 8300

8. Solve problem 10.10 in our textbook.
9. Solve problem 10.11 in our textbook.
