
KallistiOS
An embedded OS for Video Game Consoles

UMBC CMSC 421 - Spring 2012

Tuesday, May 1, 12

Embedded Systems

• Computers (and OSes, of course) are
everywhere!

• Low-power, low-memory devices make up
a large proportion of the market

• These embedded devices require careful
programming and much smaller code than
many OSes today provide

Tuesday, May 1, 12

Embedded Systems

• The video game consoles of yesteryear are
very much like today’s embedded systems

• They do not come with real Operating
Systems installed on them -- they are
included with/linked directly to the games

• If that’s the case, then how are they an OS?

Tuesday, May 1, 12

Embedded OSes

• Many current examples of embedded OSes
look a lot more like traditional OSes, as the
devices themselves are much more
powerful

• iOS

• Linux (Android)

• Windows Phone/Windows RT

Tuesday, May 1, 12

Embedded OSes

• However, there are plenty of other
embedded systems than just cell phones

• On-board computers (ECUs and such) in
cars

• Medical equipment

• Microcontroller-based systems

Tuesday, May 1, 12

A Different Idea of an
OS

• These low-powered devices require a
fundamentally different idea of an OS than
the other examples of embedded OSes

• Very little RAM, potentially no writable
storage, a very specific set of devices to
support, etc.

• Many features of an OS are not required or
are completely useless on these!

Tuesday, May 1, 12

A retrospective...

• As an example, lets take
a closer look at the Sega
Dreamcast

• Released in 1999 (1998
in Japan)

Tuesday, May 1, 12

System Specifications

• 200 MHz Hitachi SuperH 4 processor

• 16 MB of system RAM

• PowerVR 2 GPU - 8 MB of Video RAM

• GD-ROM media (read-only)

• Various external peripherals (controllers,
memory cards, camera, keyboard, mouse,
network card)

Tuesday, May 1, 12

What would its OS look like?

Tuesday, May 1, 12

Enter KallistiOS

• KallistiOS is an embedded OS for video
game consoles, including the Dreamcast

• Developed by the homebrew community
without use of the official SDKs

• Lacks many of the abstractions of todays
mainstream OSes, but makes up for it in its
ease-of-use for programming and its
relative speed

Tuesday, May 1, 12

What KOS is

• A “pseudo-real-time OS”

• Monolithic kernel with ability to load
modules

• Hardware manager (interrupts, DMA,
MMU, etc)

• Pseudo-POSIX layer (libc, pthreads, VFS)

• Hardware abstraction layer

Tuesday, May 1, 12

What KOS does not do

• Full POSIX-compliance

• Multi-tasking (multiple independent
processes)

• Memory protection

Tuesday, May 1, 12

Well, how is that an
OS?

• Think back to what an OS has as its main
tasks...

• Resource allocation

• Control program

• Does KOS handle them? - Of course!

Tuesday, May 1, 12

The KOS Kernel

• Divided into several subsystems:

• Pseudo-POSIX layer

• Virtual Filesystem

• Threads

• Networking

• Hardware Support

Tuesday, May 1, 12

Programming with KOS

• No user/kernel mode distinction (unless
you want to provide it)

• Direct hardware access (for the most part)

• Several normal OS-like abstractions (libc,
C++ iostreams, BSD sockets, partial
OpenGL support)

• User programs statically link the kernel

Tuesday, May 1, 12

