CMSC 411—Project—Part b

For this second phase, you will be building an 8-bit ALU that implements the core requirements
of the MIPS instruction set. The R-mode instructions that are handled by the ALU include:

e add - opcode/func: 0/ 20nex; $d = $s + $t, w/overflow detect
e addu - opcode/func: 0/ 21hex; $d = $s + $t

e sub —opcode/func: 0/ 22nex; $d = $s - $t, w/overflow detect
e subu - opcode/func: 0/ 23nex; $d = $s - $t

e and - opcode/func: 0/ 24nex; $d = $s & $t

e or -—opcode/func: 0/ 25nex; $d = $s | $t

e Xxor —opcode/func: 0/ 26nex; $d = $s " $t

e nor -opcode/func: 0/ 27hex; $d = ~($s | $t)

There are just a few more, but the above are the only ones you will be implementing for this
project; if you can accomplish this subset, you can feel confident that you have implemented a
very capable ALU. Also, there are the immediate mode I-format versions, but recall that these
differ from the R-mode instructions only in terms of where the input data is channeled from, so
that part does not impact the ALU design.

Note that the opcodes for all of these instructions is 0, so the instruction decode logic will
examine the “funct” part of the instruction to decode what should be done. All ALU instructions
have an opcode of 0, indicating it is an R-format instruction. You are not responsible for this
decoding logic. Notice that the function codes are in a narrow range: they are all between 20nex
and 27nexF The instruction decode step will therefore just route the least significant bits of the
instruction to your ALU. Assume that only the least significant 3 bits are routed to the ALU’s
control lines. (The true picture is somewhat more complex—I hope you don’t mind my
simplifying for this project ©)

For this project, you will mainly be using low-level gates: AND, OR, NOT, XOR, etc.. You are
allowed to use the full adder from the library, but you cannot set the “data bits” attribute above 1,
meaning you must manually connect 8 of these together. You are not allowed to use the
subtractor, though! You can even use multiplexers and decoders if you find them useful, but they
must be at most 4-channel (i.e., no more than 2 selection bits)! Since the function code is 3 bits,
i.e., 8-valued, using a 4-channel multiplexer is a challenge. And, no, you cannot gang multiple
muxes together to simulate a larger mux—already thought of that.

Note that the ALU is a purely combinational circuit: you should not need any clock signals, flip
flops, and the like. Remember the core design principle of an ALU: different parts of the circuit
might be/usually are computing different answers (one part of the circuit might be computing the
sum, while another is simultaneously computing the AND of the same inputs), and the second
part of the circuit often just chooses which answer to present on the output. In some cases,
though, the difference between two operations is implemented by modifying the input but using
the same data path. For example, to implement ADD vs. SUB, since the latter can be

implemented via “add the 2’s-complement of the subtrahend”, so you would modify input B
before routing it through the same full adder circuit as you would with addition.

The Assignment

You will be constructing an ALU that functions much the black box we’ve been using in our
architecture diagrams for the last several weeks. However, like our register file from the first
project, it will be scaled down a bit: you will only be implementing the R-format instructions,
and not all of them. You will also not have to support multiplication or division—whew! You
will support a word size of 8 bits, but with Logisim, that is not too difficult to scale. The circuit
should have two input buses, representing the $s and $t inputs ($t is the addend/subtrahend). It
should have an output bus that sends out the result of the calculations. It must also have an
OVERFLOW line, which should be high IFF the command is sub or add, and the result
overflowed/underflowed (remember the carry-in/carry-out rule from the beginning of the
semester).

In detail, the inputs to your circuit should be:

e S-in: Input value $s: the addendl, or minuend: value to be added to/subtracted from
e T-in: Input value $t: the addend2, or subtrahend: value to be added or subtracted.
e Op: the low 3 bits of the “FUNCT” part of the instruction.

And the outputs from your circuit should be:

e D-out: The result of the requested ALU operation

e OF: overflow/underflow indicator. Should only be high when instruction is “add” or
“sub”, and overflow/underflow has occurred. So, for example, this should never be high
if the instruction was “addu”.

You have (almost) complete freedom to design the circuit as you wish, modulo the restrictions
on adder and multiplexer widths described earlier. Here are some hints, though:

e Note that for (almost) all operations, each bit column is independent of the others. This is
definitely true of logical operators such as AND and OR, but it is also true of ADD: for
each 1-bit full adder, note that it takes the corresponding bits from the two inputs, its
carry-in is from the previous bit adder, its carry-out goes to the next adder. Also note that
for SUB, creating the 2’s complement of the subtrahend consists of inverting each bit of
input T-in, and you can take care of the “add 1” part, not by treating bit 0 of the input
specially, but by using the carry-in trick for the bit-0 adder. This means that you can
create the circuit design for a single column, put it in a black box, then paste 8 copies of
this into your circuit.

e It might be easier, depending on the rest of your design, to use one of two alternatives for
routing control signals through your circuit: (a) a set of Boolean logic circuits to
explicitly test for one or more specific patterns that go to various subcircuits; or (b) a
simple decoder to convert the 3-bit function code into separate 8 control lines, each one
“on” for a given function. Each alternative causes a different kind of complication
because your output multiplexer is only allowed to be 4-input at most.

By default, Logisim starts up with the layout pane opened to the “Untitled—=>main” circuit. You
should create your register file as new circuit at the top level (just right-click on the “Untitled”
folder in the left pane, then select “new circuit...”), and call it “ALU411”. That way, you can

more easily integrate it as a component in other circuits.

