
CMSC 411

Instruction-level Parallelism,

Dynamic Pipeline Scheduling

Slides courtesy Patterson & Hennessey

Chapter 4 — The Processor — 2

Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in
parallel

 To increase ILP
 Deeper pipeline

 Less work per stage shorter clock cycle

 Multiple issue
 Replicate pipeline stages multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice

§
4
.1

0
 P

a
ra

lle
lis

m
 v

ia
 In

s
tru

c
tio

n
s

Chapter 4 — The Processor — 3

Multiple Issue

 Static multiple issue

 Compiler groups instructions to be issued together

 Packages them into “issue slots”

 Compiler detects and avoids hazards

 Dynamic multiple issue

 CPU examines instruction stream and chooses

instructions to issue each cycle

 Compiler can help by reordering instructions

 CPU resolves hazards using advanced techniques at

runtime

Chapter 4 — The Processor — 4

Speculation

 “Guess” what to do with an instruction

 Start operation as soon as possible

 Check whether guess was right

 If so, complete the operation

 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue

 Examples

 Speculate on branch outcome

 Roll back if path taken is different

 Speculate on load

 Roll back if location is updated

Chapter 4 — The Processor — 5

Compiler/Hardware Speculation

 Compiler can reorder instructions

 e.g., move load before branch

 Can include “fix-up” instructions to recover

from incorrect guess

 Hardware can look ahead for instructions

to execute

 Buffer results until it determines they are

actually needed

 Flush buffers on incorrect speculation

Chapter 4 — The Processor — 6

Speculation and Exceptions

 What if exception occurs on a
speculatively executed instruction?

 e.g., speculative load before null-pointer
check

 Static speculation

 Can add ISA support for deferring exceptions

 Dynamic speculation

 Can buffer exceptions until instruction
completion (which may not occur)

Chapter 4 — The Processor — 7

Static Multiple Issue

 Compiler groups instructions into “issue

packets”

 Group of instructions that can be issued on a

single cycle

 Determined by pipeline resources required

 Think of an issue packet as a very long

instruction

 Specifies multiple concurrent operations

 Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 8

Scheduling Static Multiple Issue

 Compiler must remove some/all hazards

 Reorder instructions into issue packets

 No dependencies with a packet

 Possibly some dependencies between

packets

 Varies between ISAs; compiler must know!

 Pad with nop if necessary

Chapter 4 — The Processor — 9

MIPS with Static Dual Issue

 Two-issue packets

 One ALU/branch instruction

 One load/store instruction

 64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 10

MIPS with Static Dual Issue

Chapter 4 — The Processor — 11

Hazards in the Dual-Issue MIPS

 More instructions executing in parallel

 EX data hazard

 Forwarding avoided stalls with single-issue

 Now can’t use ALU result in load/store in same packet

 add $t0, $s0, $s1
load $s2, 0($t0)

 Split into two packets, effectively a stall

 Load-use hazard

 Still one cycle use latency, but now two instructions

 More aggressive scheduling required

Chapter 4 — The Processor — 12

Scheduling Example

 Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 13

Loop Unrolling

 Replicate loop body to expose more

parallelism

 Reduces loop-control overhead

 Use different registers per replication

 Called “register renaming”

 Avoid loop-carried “anti-dependencies”

 Store followed by a load of the same register

 Aka “name dependence”

 Reuse of a register name

Chapter 4 — The Processor — 14

Loop Unrolling Example

 IPC = 14/8 = 1.75

 Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle

Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

Chapter 4 — The Processor — 15

Dynamic Multiple Issue

 “Superscalar” processors

 CPU decides whether to issue 0, 1, 2, …

each cycle

 Avoiding structural and data hazards

 Avoids the need for compiler scheduling

 Though it may still help

 Code semantics ensured by the CPU

Chapter 4 — The Processor — 16

Dynamic Pipeline Scheduling

 Allow the CPU to execute instructions out

of order to avoid stalls

 But commit result to registers in order

 Example

lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

 Can start sub while addu is waiting for lw

Chapter 4 — The Processor — 17

Dynamically Scheduled CPU

Results also sent

to any waiting

reservation stations

Reorders buffer for

register writes
Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

Chapter 4 — The Processor — 18

Register Renaming

 Reservation stations and reorder buffer
effectively provide register renaming

 On instruction issue to reservation station

 If operand is available in register file or
reorder buffer
 Copied to reservation station

 No longer required in the register; can be
overwritten

 If operand is not yet available
 It will be provided to the reservation station by a

function unit

 Register update may not be required

Chapter 4 — The Processor — 19

Speculation

 Predict branch and continue issuing

 Don’t commit until branch outcome

determined

 Load speculation

 Avoid load and cache miss delay

 Predict the effective address

 Predict loaded value

 Load before completing outstanding stores

 Bypass stored values to load unit

 Don’t commit load until speculation cleared

Chapter 4 — The Processor — 20

Why Do Dynamic Scheduling?

 Why not just let the compiler schedule

code?

 Not all stalls are predicable

 e.g., cache misses

 Can’t always schedule around branches

 Branch outcome is dynamically determined

 Different implementations of an ISA have

different latencies and hazards

Chapter 4 — The Processor — 21

Does Multiple Issue Work?

 Yes, but not as much as we’d like

 Programs have real dependencies that limit ILP

 Some dependencies are hard to eliminate

 e.g., pointer aliasing

 Some parallelism is hard to expose

 Limited window size during instruction issue

 Memory delays and limited bandwidth

 Hard to keep pipelines full

 Speculation can help if done well

The BIG Picture

Chapter 4 — The Processor — 22

Power Efficiency

 Complexity of dynamic scheduling and

speculations requires power

 Multiple simpler cores may be better

Microprocessor Year Clock Rate Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Cortex A8 and Intel i7
Processor ARM A8 Intel Core i7 920

Market Personal Mobile Device Server, cloud

Thermal design power 2 Watts 130 Watts

Clock rate 1 GHz 2.66 GHz

Cores/Chip 1 4

Floating point? No Yes

Multiple issue? Dynamic Dynamic

Peak instructions/clock cycle 2 4

Pipeline stages 14 14

Pipeline schedule Static in-order Dynamic out-of-order

with speculation

Branch prediction 2-level 2-level

1st level caches/core 32 KiB I, 32 KiB D 32 KiB I, 32 KiB D

2nd level caches/core 128-1024 KiB 256 KiB

3rd level caches (shared) - 2- 8 MB

Chapter 4 — The Processor — 23

§
4
.1

1
 R

e
a
l S

tu
ff: T

h
e
 A

R
M

 C
o
rte

x
-A

8
 a

n
d
 In

te
l C

o
re

 i7
 P

ip
e
lin

e
s

ARM Cortex-A8 Pipeline

Chapter 4 — The Processor — 24

ARM Cortex-A8 Performance

Chapter 4 — The Processor — 25

Core i7 Pipeline

Chapter 4 — The Processor — 26

Core i7 Performance

Chapter 4 — The Processor — 27

Matrix Multiply

 Unrolled C code
1 #include <x86intrin.h>

2 #define UNROLL (4)

3

4 void dgemm (int n, double* A, double* B, double* C)

5 {

6 for (int i = 0; i < n; i+=UNROLL*4)

7 for (int j = 0; j < n; j++) {

8 __m256d c[4];

9 for (int x = 0; x < UNROLL; x++)

10 c[x] = _mm256_load_pd(C+i+x*4+j*n);

11

12 for(int k = 0; k < n; k++)

13 {

14 __m256d b = _mm256_broadcast_sd(B+k+j*n);

15 for (int x = 0; x < UNROLL; x++)

16 c[x] = _mm256_add_pd(c[x],

17 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));

18 }

19

20 for (int x = 0; x < UNROLL; x++)

21 _mm256_store_pd(C+i+x*4+j*n, c[x]);

22 }

23 }

Chapter 4 — The Processor — 28

§
4
.1

2
 In

s
tru

c
tio

n
-L

e
v
e
l P

a
ra

lle
lis

m
 a

n
d
 M

a
trix

 M
u
ltip

ly

Matrix Multiply

 Assembly code:
1 vmovapd (%r11),%ymm4 # Load 4 elements of C into %ymm4

2 mov %rbx,%rax # register %rax = %rbx

3 xor %ecx,%ecx # register %ecx = 0

4 vmovapd 0x20(%r11),%ymm3 # Load 4 elements of C into %ymm3

5 vmovapd 0x40(%r11),%ymm2 # Load 4 elements of C into %ymm2

6 vmovapd 0x60(%r11),%ymm1 # Load 4 elements of C into %ymm1

7 vbroadcastsd (%rcx,%r9,1),%ymm0 # Make 4 copies of B element

8 add $0x8,%rcx # register %rcx = %rcx + 8

9 vmulpd (%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements

10 vaddpd %ymm5,%ymm4,%ymm4 # Parallel add %ymm5, %ymm4

11 vmulpd 0x20(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements

12 vaddpd %ymm5,%ymm3,%ymm3 # Parallel add %ymm5, %ymm3

13 vmulpd 0x40(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements

14 vmulpd 0x60(%rax),%ymm0,%ymm0 # Parallel mul %ymm1,4 A elements

15 add %r8,%rax # register %rax = %rax + %r8

16 cmp %r10,%rcx # compare %r8 to %rax

17 vaddpd %ymm5,%ymm2,%ymm2 # Parallel add %ymm5, %ymm2

18 vaddpd %ymm0,%ymm1,%ymm1 # Parallel add %ymm0, %ymm1

19 jne 68 <dgemm+0x68> # jump if not %r8 != %rax

20 add $0x1,%esi # register % esi = % esi + 1

21 vmovapd %ymm4,(%r11) # Store %ymm4 into 4 C elements

22 vmovapd %ymm3,0x20(%r11) # Store %ymm3 into 4 C elements

23 vmovapd %ymm2,0x40(%r11) # Store %ymm2 into 4 C elements

24 vmovapd %ymm1,0x60(%r11) # Store %ymm1 into 4 C elements

Chapter 4 — The Processor — 29

§
4
.1

2
 In

s
tru

c
tio

n
-L

e
v
e
l P

a
ra

lle
lis

m
 a

n
d
 M

a
trix

 M
u
ltip

ly

Performance Impact

Chapter 4 — The Processor — 30

Chapter 4 — The Processor — 31

Fallacies

 Pipelining is easy (!)

 The basic idea is easy

 The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology

 So why haven’t we always done pipelining?

 More transistors make more advanced techniques

feasible

 Pipeline-related ISA design needs to take account of

technology trends

 e.g., predicated instructions

§
4
.1

4
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 4 — The Processor — 32

Pitfalls

 Poor ISA design can make pipelining

harder

 e.g., complex instruction sets (VAX, IA-32)

 Significant overhead to make pipelining work

 IA-32 micro-op approach

 e.g., complex addressing modes

 Register update side effects, memory indirection

 e.g., delayed branches

 Advanced pipelines have long delay slots

Chapter 4 — The Processor — 33

Concluding Remarks

 ISA influences design of datapath and control

 Datapath and control influence design of ISA

 Pipelining improves instruction throughput

using parallelism

 More instructions completed per second

 Latency for each instruction not reduced

 Hazards: structural, data, control

 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism

 Complexity leads to the power wall

§
4
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

