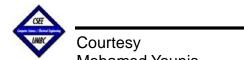
# CMPE 411 Computer Architecture

### Lecture 9

## **Floating Point Operations**



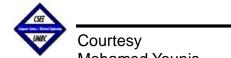
### **Lecture's Overview**

### Previous Lecture:

- Algorithms for dividing unsigned numbers (Evolution of optimization, complexity)
- Handling of sign while performing a division (Remainder sign matches the dividend's)
- Hardware design for integer division (Same hardware as Multiply)

### **This Lecture:**

- Representation of floating point numbers
- Floating point arithmetic
- Floating point hardware



## Introduction

□ What can be represented in N bits?

2<sup>N</sup>-1 ➔ Unsigned to 0 N-1 N-1 - 2 2 → 2s Complement to N-1 N-1 -2 +1 → 1s Complement 2 -1 to Ν 2 - M - 1  $\rightarrow$  Excess M (E = e + M) -M to N/4 - 1 → BCD 10  $\mathbf{0}$ to

#### But, what about?

- → very large numbers?
- → very small number?
- → rational numbers

Courtesy

- ➔ irrational numbers
- ➔ transcendental numbers

- 9,349,398,989,787,762,244,859,087,678
- - 2/3 √2

е, П

\* Slide is courtesy of Dave Patterson

## **Binary Coded Decimal (BCD)**

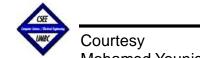
#### □ Each binary coded decimal digit is composed of 4 bits.

(a) 
$$\frac{0\ 0\ 0\ 0}{(0)_{10}}$$
  $\frac{0\ 0\ 1\ 1}{(3)_{10}}$   $\frac{0\ 0\ 0\ 0}{(0)_{10}}$   $\frac{0\ 0\ 0\ 1}{(1)_{10}}$  (+301)<sub>10</sub> Nine's and ten's complement  
(b)  $\frac{1\ 0\ 0\ 1}{(9)_{10}}$   $\frac{0\ 1\ 1\ 0}{(6)_{10}}$   $\frac{1\ 0\ 0\ 1}{(9)_{10}}$   $\frac{1\ 0\ 0\ 0}{(8)_{10}}$  (-301)<sub>10</sub> Nine's complement  
(c)  $\frac{1\ 0\ 0\ 1}{(9)_{10}}$   $\frac{0\ 1\ 1\ 0}{(6)_{10}}$   $\frac{1\ 0\ 0\ 1}{(9)_{10}}$   $\frac{1\ 0\ 0\ 1}{(9)_{10}}$  (-301)<sub>10</sub> Ten's complement

□ <u>Example</u>: Represent +079<sub>10</sub> in BCD: 0000 0111 1001

### ☐ <u>Example</u>: Represent -079<sub>10</sub> in BCD: 1001 0010 0001

- 1. Subtract each digit of -079 from 9 to obtain the nine's complement, so 999 079 = 920.
- 2. Adding 1 produces the ten's complement: 920 + 1 = 921.
- 3. Converting each base 10 digit of 921 to BCD produces 1001 0010 0001



\* Slide is courtesy of M. Murdocca and V. Heuring

## Excess (Biased)

- The leftmost bit is the sign (usually 1 = positive, 0 = negative).
   Representations of a number are obtained by adding a bias to the two's complement representation. This goes both ways, converting between positive and negative numbers.
- The effect is that numerically smaller numbers have smaller bit patterns, simplifying comparisons for floating point exponents.
- □ Example (excess 128 "adds" 128 to the two's complement version, ignoring any carry out of the most significant bit): + $12_{10} = 10001100_2$  ,  $-12_{10} = 01110100_2$

□ Only one representations for zero:

Courtesy

 $+0 = 1000000_2$  ,  $-0 = 1000000_2$ 

 $\Box$  Range for an 8-bit representation is [+127<sub>10</sub>, -128<sub>10</sub>]

Range for an N-bit representation is [+(2<sup>N-1</sup>-1), Auguston of the sy of the

### **3-Bit Signed Integer Representations**

| Decimal | Unsigned | <u>Sign–Mag.</u> | 1's Comp. | 2's Comp. | Excess 4 |
|---------|----------|------------------|-----------|-----------|----------|
| 7       | 111      | _                | _         | _         | _        |
| 6       | 110      | -                | _         | -         | -        |
| 5       | 101      | _                | _         | _         | _        |
| 4       | 100      | -                | _         | _         | _        |
| 3       | 011      | 011              | 011       | 011       | 111      |
| 2       | 010      | 010              | 010       | 010       | 110      |
| 1       | 001      | 001              | 001       | 001       | 101      |
| +0      | 000      | 000              | 000       | 000       | 100      |
| -0      | _        | 100              | 111       | 000       | 100      |
| -1      | _        | 101              | 110       | 111       | 011      |
| -2      | _        | 110              | 101       | 110       | 010      |
| -3      | _        | 111              | 100       | 101       | 001      |
| -4      | _        |                  | _         | 100       | 000      |

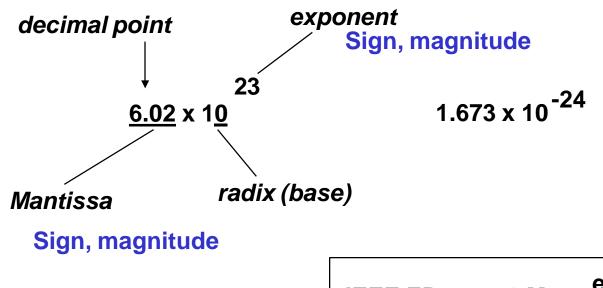


Courtesy

CMSC 411, Computer Architecture

\* Slide is courtesy of M. Murdocca and V. Heuring

## **Floating Point Numbers**



Issues:

→ Arithmetic (+, -, \*, /)

- → Representation, Normal form (no leading zeros)
- ➔ Range and Precision
- → Rounding
- → Exceptions (e.g., divide by zero, overflow, underflow)
- → Errors

Courtesy

aa a d Maxua ia

 $\clubsuit$  Properties (negation, inversion, if A  $\geq$  B then A - B  $\geq$  0 )

### **Normalization**

□ The base 10 number 254 can be represented in floating point form as 254 × 10<sup>0</sup>, or equivalently as:

 $25.4 \times 10^{1}$ , or

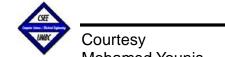
 $2.54 \times 10^2$ , or

 $.254 \times 10^3$ , or

 $.0254 \times 10^4,$  or

infinitely many other ways, which creates problems when making comparisons

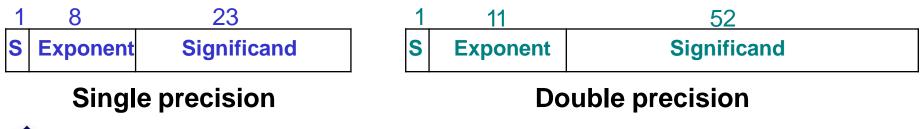
- □ Floating point numbers are usually normalized, with the radix point located in <u>only</u> one possible position for a given number
- □ Usually, but not always, the normalized representation places the radix point immediately to the left of the leftmost, nonzero digit in the fraction, as in:  $.254 \times 10^3$

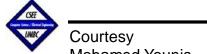


\* Slide is courtesy of M. Murdocca and V. Heuring

### **Floating-Point Representation**

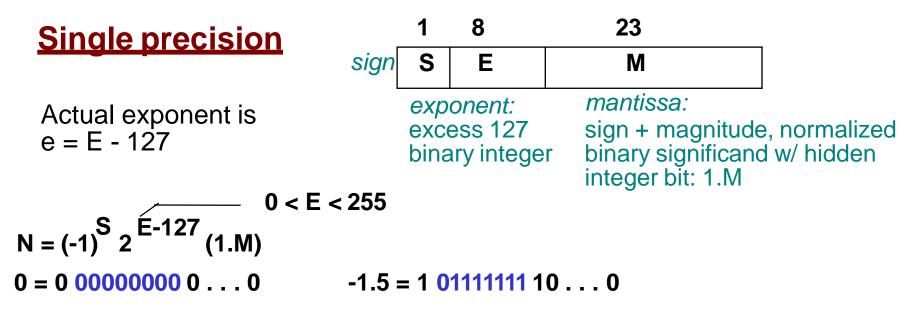
- □ The size of the exponent determines the range of represented numbers
- Precision of the representation depends on the size of the significand
- □ The fixed word size requires a trade-off between accuracy and range
- Too large number cannot be represented causing an "overflow" while a too small number causes an "underflow"
- Negative and positive mantissas are designated by a sign bit using a sign and magnitude representation
- Exponents are usually represented using "excess M" representation to facilitate comparison between floating point numbers
- Double precision uses multiple words to expand the range of both the exponent and mantissa and limits overflow and underflow conditions





### **IEEE 754 Standard Representation**

#### □ Fairly ubiquitous since after 1980



□ Magnitude of numbers that can be represented is in the range:

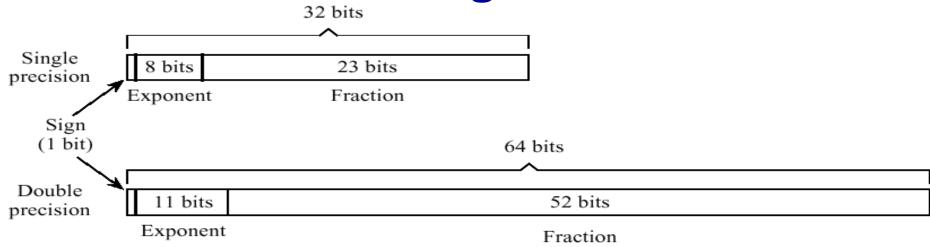
 $2^{-126}$  (1.0) to  $2^{127}$  (2 - 2 <sup>-23</sup>) which is approximately:  $1.8 \times 10^{-38}$  to  $3.40 \times 10^{-38}$ 



Integer comparison is valid on IEEE Floating Point numbers of same sign

Courtesy

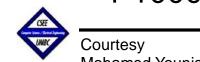
## **IEEE-754 Floating Point Formats**



Example: show -12.625<sub>10</sub> in single precision IEEE-754 format.

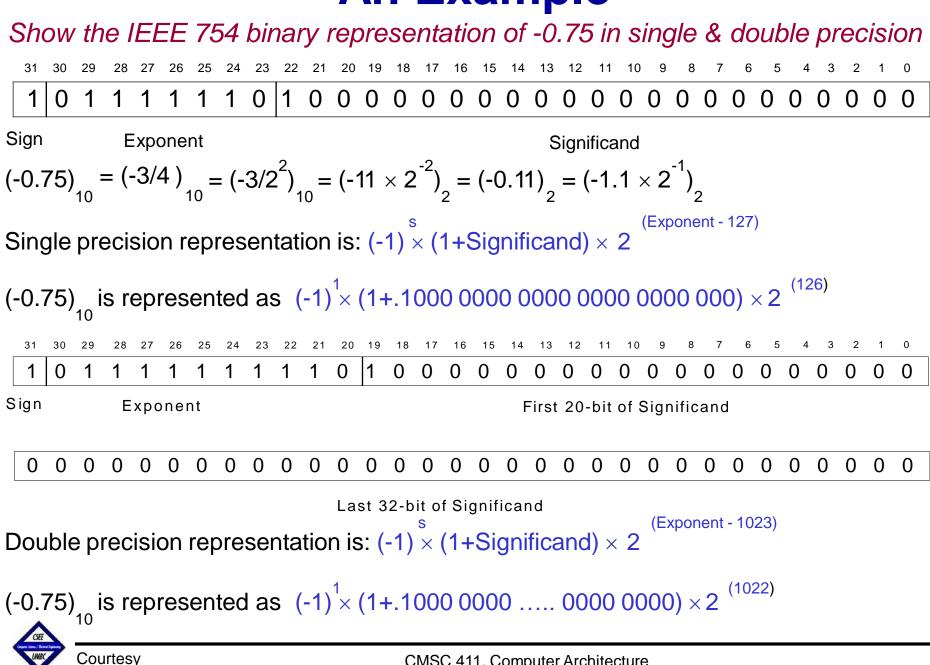
- Step #1: Convert to target base.  $-12.625_{10} = -1100.101_2$
- Step #2: Normalize.  $-1100.101_2 = -1.100101_2 \times 2^3$

Step #3: Fill in bit fields. Sign is negative, so sign bit is 1. Exponent is in excess 127 (not excess 128!), so exponent is represented as the unsigned integer 3 + 127 = 130. Leading 1 of significand is hidden, so final bit pattern is:



 $\ast$  Slide is courtesy of M. Murdocca and V. Heuring

### An Example



## **Floating Point Arithmetic**

- Floating point arithmetic differs from integer arithmetic in that exponents must be handled as well as the magnitudes of the operands.
- The exponents of the operands must be made equal for addition and subtraction. The fractions are then added or subtracted as appropriate, and the result is normalized.

### **Example**: Perform the following addition: $(.101 \times 2^3 + .111 \times 2^4)_2$

- Start by adjusting the smaller exponent to be equal to the larger exponent, and adjust the fraction accordingly. Thus we have .101 × 2<sup>3</sup> = .010 × 2<sup>4</sup>, losing .001 × 2<sup>3</sup> of precision in the process.
- The resulting sum is (.010 + .111) × 2<sup>4</sup> = 1.001 × 2<sup>4</sup> = .1001 × 2<sup>5</sup> and rounding to three significant digits, .100 × 2<sup>5</sup>, and we have lost another 0.001 × 2<sup>4</sup> in the rounding process.



## **Floating Point Addition**

For addition (or subtraction) this translates into the following steps:

(1) Compute Ye - Xe (getting ready to align)

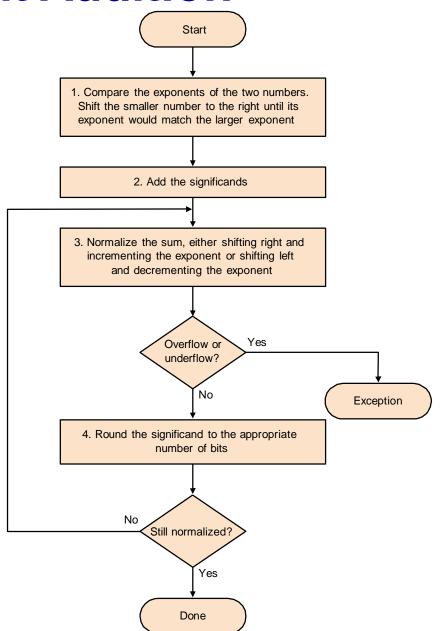
(2) Right shift Xm to form Xm 2 (Xe - Ye)

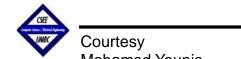
(3) Compute Xm 2<sup>(Xe - Ye)</sup> + Ym

If representation demands normalization, then the following step:

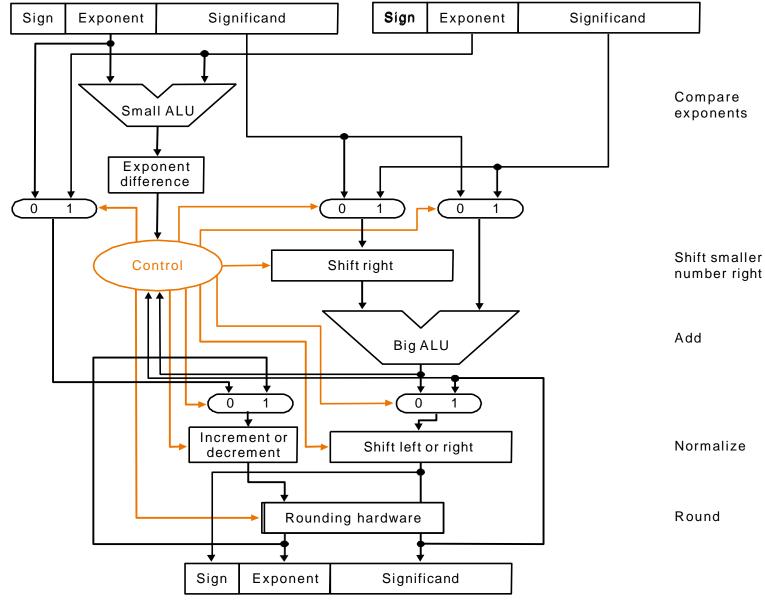
(4) Left shift result, decrement result exponent Right shift result, increment result Continue until MSB of data is (Hidden bit)

(5) If result is 0 mantissa, may need to set exponent to zero by special step





### **Floating Addition Hardware**



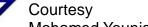
Courtesy

## **Floating Point Multiplication/Division**

- Floating point multiplication/division are performed in a manner similar to floating point addition/subtraction, except that the sign, exponent, and fraction of the result can be computed separately.
- Like/unlike signs produce positive/negative results, respectively
- Exponent of result is obtained by adding/subtracting exponents for multiplication/division. Fractions are multiplied or divided according to the operation, and then normalized.

**Example:** Perform :  $(+.110 \times 2^5) / (+.100 \times 2^4)_2$ 

- ➤ The source operand signs are the same, which means that the result will have a positive sign. We subtract exponents for division, and so the exponent of the result is 5 4 = 1.
- > We divide fractions, producing the result: 110/100 = 1.10.
- Putting it all together, the result of dividing (+.110 × 2<sup>5</sup>) by (+.100 × 2<sup>4</sup>) produces (+1.10 × 2<sup>1</sup>). After normalization, the final result is (+.110 × 2<sup>2</sup>).
  \* Slide is courtesy of M. Murdocca and V. Heuring



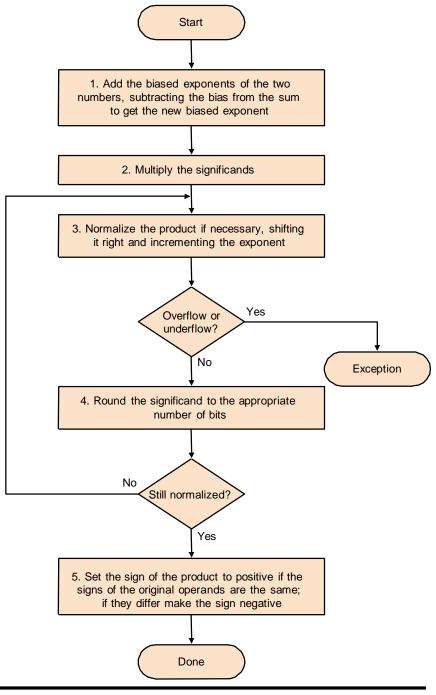
## Floating Point Multiplication

For addition (or subtraction) this translates into the following steps:

(1) Compute Ye + Xe *(adding exponents)* 

(2) doubly biased exponent must be corrected:

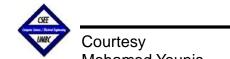
- Xe = 7Xe = 1111= 15= 7 + 8Ye = -3Ye = 0101= 5= -3 + 8Excess 810100204 + 8 + 8
- (3) Multiply the signficands
- (4) Perform normalization
- (4) Round the number to the specified size
- (5) Calculate the sign of the product



Courtesy Mohamad Vaunia

### **Denormalized Numbers**

- □ The smallest single precision normalized number is 1.0000 0000 0000 0000 0000 001 × 2<sup>-126</sup>
  - while the smallest single precision denormalized number is 0.0000 0000 0000 0000 0000 001  $\times$  2<sup>-126</sup> or 1.0  $\times$  2<sup>-149</sup>
- The IEEE 754 standard allows some floating point number to be denormalized in order to narrow the gap between 0 and the smallest normalized number
- Demorlaized numbers are allowed to degrade in significance until it becomes 0 (gradual underflow)
- The potential of occasional denormalized operands complicates the design of the floating point unit
- PDP-11, VAX cannot represent denormalized numbers and underflow to zero instead



## **Encoding of IEEE 754 Numbers**

+/- infinity S 1...1 0...0

- result of operation overflows, i.e., is larger than the largest number that can be represented
- overflow is not the same as divide by zero (raises a different exception)

NaN

HW decides what goes here

□ Not a number, but not infinity (e.q. sqrt(-4))

Generates invalid operation exception (unless operation is comparison)

#### □ NaNs propagate: f(NaN) = NaN

| Single Precision |             | Double Precision |             | Object represented           |  |
|------------------|-------------|------------------|-------------|------------------------------|--|
| Exponent         | Significand | Exponent         | Significand |                              |  |
| 0                | 0           | 0                | 0           | 0                            |  |
| 0                | Nonzero     | 0                | Nonzero     | $\pm  de$ -normalized number |  |
| 1-254            | Anything    | 1-2046           | Anything    | $\pm$ floating-point number  |  |
| 255              | 0           | 2047             | 0           | $\pm$ infinity               |  |
| 255              | Nonzero     | 2047             | Nonzero     | NaN (Not a Number)           |  |



### Conclusion

### □ <u>Summary</u>

- Representation of floating point numbers (Sign, exponent, mantissa, single & double precision, IEEE 754)
- → Floating point arithmetic

(Addition and Multiplication)

➔ Normalizing Floating point numbers

(Rounding, zero floating point number, special interpretation)

#### ☐ <u>Next Lecture</u>

- ➔ Processor datapath and control
- → Simple hardwired implementation
- ➔ Design of a control unit

Read section 3.5 in 5<sup>th</sup> Ed.

