CMPE 411 Computer Architecture

Lecture 9

Floating Point Operations

Lecture's Overview

\square Previous Lecture:

- Algorithms for dividing unsigned numbers (Evolution of optimization, complexity)
- Handling of sign while performing a division (Remainder sign matches the dividend's)
- Hardware design for integer division (Same hardware as Multiply)
\square This Lecture:
- Representation of floating point numbers
- Floating point arithmetic
- Floating point hardware

Introduction

\square What can be represented in N bits?
\rightarrow Unsigned
\rightarrow 2s Complement
\rightarrow 1s Complement
\rightarrow Excess $\mathrm{M}(\mathrm{E}=\mathrm{e}+\mathrm{M})$
\rightarrow BCD

0	to	$2^{N}-1$
-2^{N-1}	to	$2^{N-1}-1$
$-2^{N-1}+1$	to	$2^{N-1}-1$
$-M$	to	$2^{N}-M-1$
0	to	$10^{N / 4}-1$

But, what about?
\rightarrow very large numbers?
\rightarrow very small number?
\rightarrow rational numbers
\rightarrow irrational numbers
\rightarrow transcendental numbers

9,349,398,989,787,762,244,859,087,678
0.0000000000000000000000045691

2/3
$\sqrt{2}$
e, П

Binary Coded Decimal (BCD)

\square Each binary coded decimal digit is composed of 4 bits.
(a) $\underset{(0)_{10}}{0000} \underset{(3)_{10}}{00011} \underset{(0)_{10}}{00000} \underset{(1)_{10}}{00001}(+301)_{10} \begin{aligned} & \text { Nine's and ten's } \\ & \text { complement }\end{aligned}$
(b) $\underset{(9)_{10}}{1001} \underset{(6)_{10}}{0110} \underset{(9)_{10}}{1001} \underset{(8)_{10}}{1000}(-301)_{10}$ Nine's complement
(c) $\underset{(9)_{10}}{1001} \underset{(6)_{10}}{0110} \underbrace{1001}_{(9)_{10}} \underset{(9)_{10}}{1001} \quad(-301)_{10}$ Ten's complement

Example: Represent +079 ${ }_{10}$ in BCD: 000001111001
E Example: Represent -079 10 in BCD: 100100100001

1. Subtract each digit of -079 from 9 to obtain the nine's complement, so 999-079 = 920 .
2. Adding 1 produces the ten's complement: $920+1=921$.
3. Converting each base 10 digit of 921 to BCD produces 100100100001

* Slide is courtesy of M. Murdocca and V. Heuring

Excess (Biased)

\square The leftmost bit is the sign (usually $1=$ positive, $0=$ negative).
\square Representations of a number are obtained by adding a bias to the two's complement representation. This goes both ways, converting between positive and negative numbers.
The effect is that numerically smaller numbers have smaller bit patterns, simplifying comparisons for floating point exponents.
E Example (excess 128 "adds" 128 to the two's complement version, ignoring any carry out of the most significant bit):

$$
+12_{10}=10001100_{2} \quad, \quad-12_{10}=01110100_{2}
$$

\square Only one representations for zero:

$$
+0=10000000_{2} \quad, \quad-0=10000000_{2}
$$

\square Range for an 8 -bit representation is $\left[+127_{10},-128_{10}\right.$]

3-Bit Signed Integer Representations

| Decimal | Unsigned | Sign-Mag. | l's Comp. | 2's Comp. | Excess $\mathbf{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 111 | - | - | - | - |
| 6 | 110 | - | - | - | - |
| 5 | 101 | - | - | - | - |
| 4 | 100 | - | - | - | - |
| 3 | 011 | 011 | 011 | 011 | 111 |
| 2 | 010 | 010 | 010 | 010 | 110 |
| 1 | 001 | 001 | 001 | 001 | 101 |
| +0 | 000 | 000 | 000 | 000 | 100 |
| -0 | - | 100 | 111 | 000 | 100 |
| -1 | - | 101 | 110 | 111 | 011 |
| -2 | - | 110 | 101 | 110 | 010 |
| -3 | - | 111 | 100 | 101 | 001 |
| -4 | - | - | - | 100 | 000 |

Floating Point Numbers

Sign, magnitude
\square Issues:
\rightarrow Arithmetic (+, -, *, /)

$$
\text { IEEE F.P. } \quad \pm 1 . \mathrm{M} \times 2^{\mathrm{e}-127}
$$

\rightarrow Representation, Normal form (no leading zeros)
\rightarrow Range and Precision
\rightarrow Rounding
\rightarrow Exceptions (e.g., divide by zero, overflow, underflow)
\rightarrow Errors
\rightarrow Properties (negation, inversion, if $A \geq B$ then $A-B \geq 0$)

Normalization

The base 10 number 254 can be represented in floating point form as 254×10^{0}, or equivalently as:
25.4×10^{1}, or
2.54×10^{2}, or
$.254 \times 10^{3}$, or
$.0254 \times 10^{4}$, or
infinitely many other ways, which creates problems when making comparisons
\square Floating point numbers are usually normalized, with the radix point located in only one possible position for a given number

Usually, but not always, the normalized representation places the radix point immediately to the left of the leftmost, nonzero digit in the fraction, as in: . 254×10^{3}

Floating-Point Representation

The size of the exponent determines the range of represented numbers
\square Precision of the representation depends on the size of the significand
\square The fixed word size requires a trade-off between accuracy and range
Too large number cannot be represented causing an "overflow" while a too small number causes an "underflow"
\square Negative and positive mantissas are designated by a sign bit using a sign and magnitude representation
\square Exponents are usually represented using "excess M" representation to facilitate comparison between floating point numbers

Double precision uses multiple words to expand the range of both the exponent and mantissa and limits overflow and underflow conditions

Single precision

111	52	
s	Exponent	Significand

Double precision

IEEE 754 Standard Representation

- Fairly ubiquitous since after 1980

Single precision
Actual exponent is e=E-127

	1	8	23
sign	S	E	M

exponent: mantissa:
excess 127
binary integer
sign + magnitude, normalized binary significand w/ hidden integer bit: 1.M

$$
\begin{aligned}
& N=(-1)^{S}{ }_{2}{ }^{E-127}(1 . M)<E<255 \\
& 0=0000000000 \ldots 0
\end{aligned} \quad-1.5=10111111110 \ldots 0
$$

\square Magnitude of numbers that can be represented is in the range:

$$
2^{-126}(1.0) \text { to } 2^{127}\left(2-2^{-23}\right)
$$

which is approximately:

$$
1.8 \times 10^{-38} \text { to } 3.40 \times 10^{38}
$$

Integer comparison is valid on IEEE Floating Point numbers of same sign

IEEE-754 Floating Point Formats

Example: show -12.625 ${ }_{10}$ in single precision IEEE-754 format.
Step \#1: Convert to target base. $-12.625_{10}=-1100.101_{2}$
Step \#2: Normalize. $-1100.101_{2}=-1.100101_{2} \times 2^{3}$
Step \#3: Fill in bit fields. Sign is negative, so sign bit is 1 .
Exponent is in excess 127 (not excess 128!), so exponent is represented as the unsigned integer $3+127=130$. Leading 1 of significand is hidden, so final bit pattern is:

$$
110000010 \text {. } 10010100000000000000000
$$

An Example

Show the IEEE 754 binary representation of -0.75 in single \& double precision

Sign
Exponent
Significand
$(-0.75)_{10}=(-3 / 4)_{10}=\left(-3 / 2^{2}\right)_{10}=\left(-11 \times 2^{-2}\right)_{2}=(-0.11)_{2}=\left(-1.1 \times 2^{-1}\right)_{2}$
Single precision representation is: $(-1)^{s} \times(1+$ Significand $) \times 2^{\text {(Exponent-127) }}$
Single precision representation is: $(-1) \times(1+$ Significand $) \times 2$
$(-0.75)_{10}$ is represented as $(-1)^{1} \times(1+.10000000000000000000000) \times 2$

31	30	29	28	27	26	25	24	23	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	0	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Sign
Exponent
First 20-bit of Significand

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Last 32 -bit of Significand
Double precision representation is: $(-1)^{\text {s }} \times(1+$ Significand $) \times 2$
$(-0.75)_{10}$ is represented as $(-1)^{1} \times(1+.10000000 \ldots .00000000) \times 2^{(1022)}$

Floating Point Arithmetic

$>$ Floating point arithmetic differs from integer arithmetic in that exponents must be handled as well as the magnitudes of the operands.
> The exponents of the operands must be made equal for addition and subtraction. The fractions are then added or subtracted as appropriate, and the result is normalized.

Example: Perform the following addition: $\left(.101 \times 2^{3}+.111 \times 2^{4}\right)_{2}$
$>$ Start by adjusting the smaller exponent to be equal to the larger exponent, and adjust the fraction accordingly. Thus we have $.101 \times 2^{3}=.010 \times 2^{4}$, losing $.001 \times 2^{3}$ of precision in the process.
$>$ The resulting sum is $(.010+.111) \times 2^{4}=1.001 \times 2^{4}=.1001 \times 2^{5}$ and rounding to three significant digits, $.100 \times 2^{5}$, and we have lost another 0.001×2^{4} in the rounding process.

Floating Point Addition

For addition (or subtraction) this translates into the following steps:
(1) Compute $\mathrm{Ye}-\mathrm{Xe}$ (getting ready to align)
(2) Right shift Xm to form $\mathrm{Xm} 2^{(\mathrm{Xe}-\mathrm{Ye})}$
(3) Compute $\mathrm{Xm} 2^{(\mathrm{Xe}-\mathrm{Y})}+\mathrm{Ym}$

If representation demands normalization, then the following step:
(4) Left shift result, decrement result exponent Right shift result, increment result Continue until MSB of data is (Hidden bit)
(5) If result is 0 mantissa, may need to set exponent to zero by special step

Floating Addition Hardware

Floating Point Multiplication/Division

aFloating point multiplication/division are performed in a manner similar to floating point addition/subtraction, except that the sign, exponent, and fraction of the result can be computed separately. LLike/unlike signs produce positive/negative results, respectively
\square Exponent of result is obtained by adding/subtracting exponents for multiplication/division. Fractions are multiplied or divided according to the operation, and then normalized.
Example: Perform : $\left(+.110 \times 2^{5}\right) /\left(+.100 \times 2^{4}\right)_{2}$
$>$ The source operand signs are the same, which means that the result will have a positive sign. We subtract exponents for division, and so the exponent of the result is $5-4=1$.
$>$ We divide fractions, producing the result: $110 / 100=1.10$.
$>$ Putting it all together, the result of dividing $\left(+.110 \times 2^{5}\right)$ by $\left(+.100 \times 2^{4}\right)$ produces $\left(+1.10 \times 2^{1}\right)$. After normalization, the final result is $\left(+.110 \times 2^{2}\right)$.

Floating Point Multiplication

For addition (or subtraction) this translates into the following steps:
(1) Compute $\mathrm{Ye}+\mathrm{Xe}$ (adding exponents)
(2) doubly biased exponent must be corrected:

$\mathrm{Xe}=7$	$\mathrm{Xe}=1111$	$=15$	$=7+8$
$\mathrm{Y}=-3$	$\mathrm{Ye}=\frac{0101}{}$	$=\frac{5}{20}$	$=\frac{-3+8}{4+8}+8$

(3) Multiply the signficands
(4) Perform normalization
(4) Round the number to the specified size
(5) Calculate the sign of the product

Denormalized Numbers

The smallest single precision normalized number is $1.00000000000000000000001 \times 2^{-126}$
while the smallest single precision denormalized number is
$0.00000000000000000000001 \times 2^{-126}$ or 1.0×2^{-149}
The IEEE 754 standard allows some floating point number to be denormalized in order to narrow the gap between 0 and the smallest normalized number

Demorlaized numbers are allowed to degrade in significance until it becomes 0 (gradual underflow)
\square The potential of occasional denormalized operands complicates the design of the floating point unit
\square PDP-11, VAX cannot represent denormalized numbers and underflow to zero instead

Encoding of IEEE 754 Numbers

+ +- infinity | | | $1 \ldots 1$ | $\ldots \ldots 0$ |
| :--- | :--- | :--- | :--- |

\square result of operation overflows, i.e., is larger than the largest number that can be represented
\square overflow is not the same as divide by zero (raises a different exception)
NaN

\square Not a number, but not infinity (e.q. sqrt(-4))
\square Generates invalid operation exception (unless operation is comparison)
\square NaNs propagate: $\mathrm{f}(\mathrm{NaN})=\mathrm{NaN}$

Single Precision		Double Precision		Object represented
Exponent	Significand	Exponent	Significand	0
0	0	0	0	0
0	Nonzero	0	Nonzero	\pm de-normalized number
$1-254$	Anything	$1-2046$	Anything	\pm floating-point number
255	0	2047	0	\pm infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Conclusion

\square Summary
\rightarrow Representation of floating point numbers
(Sign, exponent, mantissa, single \& double precision, IEEE 754)
\rightarrow Floating point arithmetic
(Addition and Multiplication)
\rightarrow Normalizing Floating point numbers
(Rounding, zero floating point number, special interpretation)
\square Next Lecture
\rightarrow Processor datapath and control
\rightarrow Simple hardwired implementation
\rightarrow Design of a control unit
Read section 3.5 in $5^{\text {th }}$ Ed.

