CMPE 411 Computer Architecture

Lecture 8

Performing Division

Lecture's Overview

\square Previous Lecture:

- Algorithms for multiplying unsigned numbers
(Evolution of optimization, complexity)
- Booth's algorithm for signed number multiplication
(Different approach to multiplying, 2-bit based operation selection)
- Multiple hardware design for integer multiplier (Hardware cost-driven optimization, fast multiplication)

\square This Lecture:

- Algorithms for dividing unsigned numbers
- Handling of sign while performing a division
- Hardware design for integer division

Dividing Unsigned Numbers

\square Paper and pencil example (unsigned):

Divisor 1000 | 1001 | Quotient |
| :---: | :---: |
| $\frac{1001010}{\frac{1000}{10}}$ | Dividend |
| 101 | |
| 1010 | |
| $-\frac{1000}{10}$ | Remainder (or Modulo result) |

- See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or 0 * divisor
\square Dividend = Quotient x Divisor + Remainder
$\square 3$ versions of divide, successive refinement

Divide Hardware (version 1)

$\square 64$-bit Divisor register, 64-bit ALU, 64-bit Remainder register, and 32-bit Quotient register
The 32-bit value of the Divisor starts in the left half of the 64-bit register
The Divisor is shifted to the right every step to align with the Dividend
\square The Remainder register is initialized with the value of the Dividend
Control decides when to shift the Divisor and the Quotient registers and when to write new value into the Remainder register

Divide Algorithm Version 1

Dividing two n-bit numbers needs $\mathrm{n}+1$ steps to generate n -bit Quotient and Remainder

\rightarrow If the Remainder is positive,

2a. Shift the Quotient register to the left, setting the new rightmost bit to 1

Start a 1 is generated in the Quotient
\rightarrow A negative Remainder indicates that Divisor did not go into the Dividend
\rightarrow Shifting the Divisor in step 3 aligns the Divisor with the Dividend for next iteration
\rightarrow Repeat for 33 times? (First iteration needs a shift for divisor and last iteration needs a subtract)

An Example

Follow the division algorithm (version 1) to divide 7 by 2 using only 4-bit binary representation

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	00100000	00000111
1	1: Rem = Rem - Div	0000	00100000	11100111
	2b: Rem $<0 \Rightarrow+$ Div, shift left Q, Q0 $=0$	0000	00100000	00000111
	3: Shift right Divisor	0000	00010000	00000111
2	1: Rem = Rem - Div	0000	00010000	11110111
	2b: Rem $<0 \Rightarrow+$ Div, shift left Q, Q0 $=0$	0000	00010000	00000111
	3: Shift right Divisor	0000	00001000	00000111
3	1: Rem = Rem - Div	0000	00001000	11111111
	2b: Rem < $0 \Rightarrow+$ Div, shift left $\mathrm{Q}, \mathrm{Q} 0=0$	0000	00001000	00000111
	3: Shift right Divisor	0000	00000100	00000111
4	1: Rem = Rem - Div	0000	00000100	00000011
	2a: Rem $\geq 0 \Rightarrow$ shift left $\mathrm{Q}, \mathrm{Q} 0=1$	0001	00000100	00000011
	3: Shift right Divisor	0001	00000010	00000011
5	1: Rem = Rem - Div	0001	00000010	00000001
	2a: Rem $\geq 0 \Rightarrow$ shift left $Q, Q 0=1$	0011	00000010	00000001
	3: Shift right Divisor	0011	00000001	00000001

Divide Hardware (version 2)

\square In the first version of divide hardware, half the bits in Divisor always 0 $=>1 / 2$ of 64 -bit adder is wasted $\& 1 / 2$ of divisor is wasted
U Uses only 32-bit Divisor register, 32-bit ALU, 64-bit Remainder register, and 32-bit Quotient register
\square Since the least significant bits of the Divisor would not change, the Remainder could be shifted to the left instead of shifting the Divisor to the right
$\square 1$ st step cannot produce a 1 in quotient bit (divide by zero)
=> switch order to shift first and then subtract, can save 1 iteration
\square The most significant 32-bits would be used by the ALU as a result register Divisor

Divide Algorithm Version 2

An Example

Follow the division algorithm (version 2) to divide 7 by 2 using only 4-bit binary representation

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010	00000111
1	1: Shift Rem to left 1	0000	0010	00001110
	2: Rem = Rem - Div	0000	0010	11101110
	3b: Rem $<0 \Rightarrow+$ Div, shift left Q, Q0=0	0000	0010	00001110
2	1: Shift Rem to left 1	0000	0010	00011100
	2: Rem = Rem - Div	0000	0010	11111100
	3b: Rem $<0 \Rightarrow+$ Div, shift left $\mathrm{Q}, \mathrm{Q} 0=0$	0000	0010	00011100
3	1: Shift Rem to left 1	0000	0010	00111000
	2: Rem = Rem - Div	0000	0010	00011000
	3: Shift left Quotient, Q0=1	0001	0010	00011000
4	1: Shift Rem to left 1	0001	0010	00110000
	2: Rem = Rem - Div	0001	0010	00010000
	3: Shift left Quotient, Q0=1	0011	0010	00010000

Divide Hardware Version 3

\square Remainder register wastes space that exactly matches size of Quotient \Rightarrow combine Quotient register and Remainder register
\square Uses only 32-bit Divisor register, 32-bit ALU, 64-bit Remainder register, and 0-bit Quotient register
DThe same number of shift operations would apply to both the Remainder and the Quotient \Rightarrow the Remainder needs to be corrected at the end
\square The most significant 32-bits are still being used by ALU as a result register

Divide Algorithm Version 3

Iteration	Step	Divisor	Remainder
	Initial values	0010	00000111
	Shift Remleft 1	0010	00001110
1	2: Rem = Rem-Div	0010	11101110
	3b: Rem $<0 \Rightarrow+$ Div, shift left R, RO $=0$	0010	00011100
	2: Rem $=$ Rem-Div	0010	11111100
	3b: Rem $<0 \Rightarrow+$ Div, shift left R, RO $=0$	0010	00111000
3	2: Rem $=$ Rem-Div	0010	00011000
	3a: Rem $\geq 0 \Rightarrow$ shift left R, RO=1	0010	00110001
	2: Rem $=$ Rem-Div	0010	00010001
	3a: Rem $\geq 0 \Rightarrow$ shift left R, RO=1	0010	00100011
	Shift left half of Remright 1	0010	00010011

Dividing 7 by 2
\rightarrow Eliminate Quotient register by combining with Remainder and shifted left
\rightarrow Remainder would be shifted an extra time and need to be corrected at the end

Divide Hardware Version 3."x86"

- The Intel x86 line does 64×32 bit division:
\square Dividend is spread across 2 registers: EDX:EAX (same pair as mul)
\square Could modify v3 architecture to initially load 64 bits into Remainder reg
-Problem of overflow: what if Quotient > 32 bits?
- Can pre-test for this by seeing if Divisor > Dividend[64:33]

Dividing Signed Numbers

Simplest approach is to remember signs, make positive, and complement quotient and remainder if necessary (the following are not universal, however)
\rightarrow Rule 1: Dividend and Remainder must have same sign
\rightarrow Rule 2: Quotient negated if Divisor sign \& Dividend sign are different

Examples:

$$
\begin{array}{r}
\text { Dividend }=\text { Quotient } \times \text { Divisor }+ \text { Remainder } \\
7 \div 2=3, \text { remainder }=1 \\
-7 \div 2=-3, \text { remainder }=-1 \\
7 \div-2=-3, \text { remainder }=1 \\
-7 \div-2=3, \text { remainder }=-1
\end{array}
$$

MIPS division

- Instruction:

$$
\begin{aligned}
& \text { div } R[r s], R[r t] \\
& \text { divu } R[r s], R[r t] \\
& \text { Lo = R[rs]/R[rt]; Hi = R[rs] \% R[rt] }
\end{aligned}
$$

- If one of the operands is negative, sign of remainder is unspecified
- In SPIM simulator, depends on hosting architecture

Conclusion

\square Summary
\rightarrow Algorithms for dividing unsigned numbers
(Evolution of optimization, complexity)
\rightarrow Handling of sign while performing a division
(Remainder sign matches the dividend's)
\rightarrow Hardware design for integer division
(Same hardware as Multiply)
\square Next Lecture
\rightarrow Representation of floating point numbers
\rightarrow Floating point arithmetic
\rightarrow Floating point hardware
Read section 3.4 in $5^{\text {th }} \mathrm{Ed}$.

