CMSC 411 Computer Architecture

Lecture 6

Arithmetic Logic Unit

CMSC 411, Computer Architecture

Lecture's Overview

Previous Lecture:

- Number representation (Binary vs. decimal, Sign and magnitude, Two's complement)
- Addition and Subtraction of binary numbers (Sign handling, Overflow conditions)
- Logical operations (Right and left shift, AND and OR)

This Lecture:

- Constructing an Arithmetic Logic Unit
- Scaling bit operations to word sizes
- Optimization for carry generation

Introduction

- Computer words are composed of bits, thus words can be represented as binary numbers
- □ Although the natural number can be represented in binary:
 - → How are negative numbers represented?
 - What is the largest number that can be represented in a computer word
 - ➔ What happens if an operation creates a number bigger than what can be represented?
 - ➔ What about fractions and real numbers?
 - How does hardware really add, subtract, multiply, or divide numbers?
 - ➔ What are the implications of all of these on instruction sets?

Unsigned Numbers

- Numbers can be represented in any base; humans prefer base 10 and base 2 is best for computers
- The first commercial computer did offer decimal arithmetic (binary decimal coded number) and proved to be inefficient
- □ In any base the value of the *i*th digits d is: d × baseⁱ, where *i* starts at 0 and increases from right to left

 $\Box \text{ Example: } (1011)_2 = (1 \times 2^3)_{10} + (0 \times 2^2)_{10} + (1 \times 2^1)_{10} + (1 \times 2^0)_{10}$

□ The MIPS word is 32 bit long \rightarrow 2³² different numbers could be represented

 $(1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1110)_2 = (4, 294, 967, 294)_{10}$ $(1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111)_2 = (4, 294, 967, 295)_{10}$

Courtesy Mehamad Vaunia

ASCII versus Binary Numbers

- Computers were invented to crunch numbers, but very soon after they were used to process text
- □Most computers today use 8-bit bytes to represent characters using the American Standard Code for Information Exchange (ASCII)
- □ If numbers are represented as strings of ASCII digits they will need significantly larger storage and arithmetic operations will be very slow

Example:

What is the expansion in storage if the number 1 billion is represented in ASCII versus 32-bit integer?

1 billion = 1, 000, 000, 000 \rightarrow it would need 10 ASCII digits (bytes)

Thus the storage expansion = $(10 \text{ digits} \times 8 \text{ bits}) / 32 = 2.5$

Computer professionals are raised to believe that binary is natural

Sign and Magnitude Representation

- □ Computer programs calculate both positive & negative numbers and thus the the number representation has to distinguish both
- □ In sign and magnitude representation, a single bit is designated either on the left or the right of the number to indicate its sign
- Although the sign and magnitude representation is very simple, yet it has multiple shortcomings:
 - → It is not obvious where to put the sign bit: to the right or the left?
 - ➔ Adders may need an extra step to set the sign
 - → A separate sign bit means that there will be a positive and negative zero

Example:

 $(+13)_{10} = (01101)_{2 \text{ sign/magnitude}}$

$$(-13)_{10} = (11101)_{2 \text{ sign/magnitude}}$$

Sign and magnitude was shortly abandoned after their early use

Two's Complement Representation

- □ The two's complement of a number *X* represented in *n* bits is $2^n X$
- ❑ Negative numbers would always have one in the most significant bit
 → easy to be tested by hardware
- □ <u>Advantages:</u>
 - ✓ There is only one zero in the two's complement representation (programmer happy)
 - Simple hardware design for arithmetic and logical operations (Designer happy)
- Disadvantage:
 - Most positive number is 2ⁿ⁻¹-1, while least negative number is -2ⁿ⁻¹ (programmer unhappy)
- To compute the decimal value of a 32-bit two's compliment number the following formula could be used:

 $(X_{31} \times -2^{31}) + (X_{30} \times 2^{30}) + (X_{29} \times 2^{29}) + \dots + (X_1 \times 2^1) + (X_0 \times 2^0)$

Example: (1111 1111 1111 1111 1111 1111 1110)₂

 $= (1 \times -2^{31}) + (1 \times 2^{30}) + (1 \times 2^{29}) + \dots + (1 \times 2^{2}) + (0 \times 2^{1}) + (0 \times 2^{0})$ = (-4)₁₀

Numbers in a MIPS' Word

 $\begin{array}{l} (0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1101)_2 = (\ 2,\ 147,\ 483,\ 645)_{\ 10} \\ (0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1110)_2 = (\ 2,\ 147,\ 483,\ 646)_{\ 10} \\ (0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111)_2 = (\ 2,\ 147,\ 483,\ 647)_{\ 10} \\ (1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000)_2 = (-\ 2,\ 147,\ 483,\ 648)_{\ 10} \\ (1000\ 000\ 00\ 000\ 000\ 000\ 00\ 000\ 000\ 000\ 000\ 000\ 00\ 000\ 000\ 000\ 000\ 00\$

- Two's complement does have one negative number that has no corresponding positive number
- > The most positive and the least negative number are different in all bits

Quick negation for Two's Complement

Method 1:

• Convert every $1 \rightarrow 0$ and every $0 \rightarrow 1$ and then add 1 to the rest

Method 2:

O Move from right to left leave every leading 0's until reaching the first 1
 O Convert every 0→1 and 1→0 afterward until reaching the left end

Example: Negate $(2)_{10}$ $(2)_{10} = (0000\ 000\ 0000\ 0000\ 0000\ 00\ 000\ 000\ 000\ 000\ 00\ 000\ 000\ 000\ 000\ 0$

1111 1111 1111 1111 1111 1111 1111 1110

Courtesy Mohamad Younia

Shortcuts for Two's Complement

Sign extension

- When loading numbers in a wide register, the empty bits will be filled with the value of the sign bit
- > Example: Convert 16-bit versions of $(2)_{10}$ and $(-2)_{10}$ to 32-bit binary numbers

→ For $(-2)_{10}$ the 16-bit binary version is (1111 1111 1111 1110)₂ and again by making 16 copies of the value in the most significant bit (1) and placing that in the left-hand half of the word, we get:

(1111 1111 1111 1111 1111 1111 1110)₂

Grouping Binary Numbers

- Grouping every 4 binary digits is equivalent to converting to hexadecimal
- Example: (1110 1100 1010 1000 0110 0100 0010 0000)₂ = (ECA8 6420)₁₆

Addition and Subtraction

(0)

0

0

(0)0

(0)

0

0

(0)0

. . .

(1)

0

0

(0)1

(1)

1

1

(1)1

1

(0)

1

1

(1)0

(Carries)

1

0

(0)1

Digits are added bit by bit from right to left, with carries passed to the next digit to the left

0000 0000 0000 0000 0111 = 7

+ 0000 0000 0000 0000 0000 0110 = 6

0000 0000 0000 0000 0000 1101 = 13

- □ Subtraction uses addition: the appropriate operand is simply negated
- □ <u>Example:</u>

0000 0000 0000 0000 0000 0000 0111 = 7

- $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0110 = 6$
 - $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ =\ 1$

Or using two's complement arithmetic

0000 0000 0000 0000 0000 0000 0111 = 7

+ 1111 1111 1111 1111 1111 1111 1010 = - 6

 $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001 =$

CMSC 411, Computer Architecture

Arithmetic Overflow

- Overflow occurs when the result of an operation cannot be represented with the available hardware
- □ Most hardware detects and signals overflow via an exception
- Some high level languages ignore overflow (e.g. C) and some check for and handle it (e.g. Ada and Fortran)

Overflow conditions

f there is either	[,] carry-in o	r carry-out	(not both)	for the sign bit
-------------------	-------------------------	-------------	------------	------------------

Operations	Operand A	Operand B	Result
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A - B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

Example:

Assuming 4 bits 2's complement numbers, the maximum positive number is 7 and the least number is -8. Adding the numbers 6 and 5 should lead to overflow and similarly for -6 and-5.

$$0110 + 0101 = 1 011,$$

Logical Operations

- Although words are the basic blocks for most computers, it is often needed to operate on fields of bits within a word (check for a character)
- □ Logical operations are useful for bit-wise handling of words
- AND, OR and shift operations are the most famous supported operations by instruction set architectures
- Shift operations are either right (divide), filling with the sign bit or left (multiply), filling in with zeros

Examples: $(0000\ 0010)_2 << 2 \rightarrow (0000\ 1000)_2$ $(1111\ 1110)_2 << 2 \rightarrow (1111\ 1000)_2$ $(0000\ 0010)_2 >> 1 \rightarrow (0000\ 0001)_2$ $(1111\ 1110)_2 >> 1 \rightarrow (1111\ 1111)_2$

AND and OR operations are often used to isolate and augment words with certain field of bits

Logical operations can miss up signed numbers → should be carefully used

A 1-Bit Arithmetic Unit

CarryOut

A single bit adder has 3 inputs, two operands and a carry-in and generates a sum bit and a carry-out to be passed to the next 1-bit adder

CarryOut = (b.CarryIn) + (a.CarryIn) + (a.b) + (a.b.CarryIn)= (b.CarryIn) + (a.CarryIn) + (a.b)

 $Sum = (a.\overline{b}.\overline{CarryIn}) + (\overline{a}.b.\overline{CarryIn}) + (\overline{a}.\overline{b}.CarryIn) + (a.b.CarryIn)$

A 1-Bit ALU

Supporting Subtraction

- Subtraction can be performed by inverting the operand and setting the "CarryIn" input for the adder to 1 (i.e. using two's complement)
- By adding a multiplexor to the second operand, we can select either *b* or *b*
- The Binvert line indicates a subtraction operation and causes the two's complement of b to be used as an input

A 32-Bit ALU

- A full 32-bit ALU can be created by connecting adjacent 1-bit ALU's using the Carry in and carry out lines
- The carry out of the least significant bit can ripple all the way through the adder (*ripple carry adder*)
- Ripple carry adders are slow since the carry propagates from a unit to the next sequentially
- Subtraction can be performed by inverting the operand and setting the "CarryIn" input for the whole adder to 1 (i.e. using two's complement)

Supporting MIPS' "slt" instruction

Courtesy

Malaanaa di Massia la

MIPS' ALU

Courtesy

Malaa aa ah Maxuu la

ALU Symbol

Zero Result

Overflow

CMSC 411, Computer Architecture

Optimizing Adder's Design

Ripple Carry Adders

- □ The CarryIn input depends on the operation in the adjacent 1-bit adder
- □ The result of adding most significant bits is only available after all other bits, i.e. after *n*-1 single-bit additions
- □ The sequential chain reaction is too slow to be used in time-critical hardware

Carry Lookahead

- □ Anticipate the value of the carry ahead of time
- \Box Worst-case scenario is a function of $\log_2 n$ (the number of bits in the adder)
- □ It takes many more gates to anticipate the carry

Fast Carry Using "Infinite" Hardware

Using the equation:

$$C_{Out} = (b.C_{in}) + (a.C_{in}) + (a.b)$$

c2 = (b1 . c1) + (a1 . c1) + (a1 . b1)c1 = (b0 . c0) + (a0 . c0) + (a0 . b0)

Substituting the definition of c1 in c2 equation

→ Number of gates grows exponentially when getting to higher bits in the adder

Carry Lookahead (propagate & generate)

Plumbing as Carry Lookahead Analogy

Cascaded Carry Look-ahead

An Example

Determine g_i , p_i , P_i , G_i and carry out (C_4) values for these two 16-bit numbers:

- 0001 1010 0011 0011 **a**:
- **b**: 1110 0101 1110 1011
- Using the formula $g_i = (a_i \cdot b_i)$ and $p_i = (a_i + b_i)$ **Answer**:
 - *g_i*: 0000 0000 0010 0011
 - p_i: 1111 1111 1111 1011
 - The "super" propagates (P_0, P_1, P_2, P_3) are calculated as follows:
 - $P_0 = p_3$. p_2 . p_1 . $p_0 = 0$ $P_1 = p_7$, p_6 , p_5 , $p_4 = 1$
 - $P_2 = p_{11}, p_{10}, p_9, p_8 = 1$ $P_3 = p_{15}, p_{14}, p_{13}, p_{12} = 1$
 - The "super" generates (G_0, G_1, G_2, G_3) are calculated as follows:
 - $G_0 = g_3 + (p_3.g_2) + (p_3.p_2.g_1) + (p_3.p_2.p_1.g_0)$ = 0 $G_1 = g_7 + (p_7.g_6) + (p_7.p_6.g_5) + (p_7.p_6.p_5.g_4)$ = 1 $G_2 = g_{11} + (p_{11}, g_{10}) + (p_{11}, p_{10}, g_9) + (p_{11}, p_{10}, p_9, g_8) = 0$ $G_3 =$ $g_{15} + (p_{15}.g_{14}) + (p_{15}.p_{14}.g_{13}) + (p_{15}.p_{14}.g_{13}.g_{12}) = 0$
 - Finally carry-out (C_4) is:

Speed of Carry Generation

- □ There is a (gate) delay for an output to be ready once input signals are applied to a gate
- Time is estimated by simply counting the number of gates along the longest path
- Carry lookahead is faster because less cascaded levels of logic gates are used
- □ For a 16-bit ripple carry adder, carry-out is subject to 32 (16 × 2 for 1 -bit adder) gate
- Cascaded carry lookahead (C4) is delayed by only 5 gates (1 for *p* and *g*, 2 for G and 2 for C4) in a 16-bit adder

a a al Maxua la

Courtesy

It takes two gates delay for carry-out to be available in a single bit adder

Conclusion

□ <u>Summary</u>

- → Constructing an Arithmetic Logic Unit (Different blocks and gluing them together)
- → Scaling bit operations to word sizes

(Ripple carry adder, MIPS ALU)

→ Optimization for carry handling (Measuring performance, Carry lookahead)

☐ <u>Next Lecture</u>

- → Algorithms for multiplying unsigned numbers
- → Booth's algorithm for signed number multiplication
- → Multiple hardware design for integer multiplier

Courtesy

a a al Maxua la

Read sections (B.1 – B.6) in 5rd Ed., or (3.1, C.5-C.6) in 4th Ed. Of the textbook