
CMSC 411

Computer Architecture

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

Lecture 6

Arithmetic Logic Unit

Lecture’s Overview

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

 Previous Lecture:

• Number representation
(Binary vs. decimal, Sign and magnitude, Two’s complement)

• Addition and Subtraction of binary numbers
(Sign handling, Overflow conditions)

• Logical operations
(Right and left shift, AND and OR)

 This Lecture:

• Constructing an Arithmetic Logic Unit

• Scaling bit operations to word sizes

• Optimization for carry generation

Introduction

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 3

 Computer words are composed of bits, thus words can be

represented as binary numbers

 Although the natural number can be represented in binary:

 How are negative numbers represented?

What is the largest number that can be represented in a

computer word

What happens if an operation creates a number bigger than

what can be represented?

What about fractions and real numbers?

 How does hardware really add, subtract, multiply, or divide

numbers?

What are the implications of all of these on instruction sets?

Unsigned Numbers
 Numbers can be represented in any base; humans prefer base 10 and

base 2 is best for computers

 The first commercial computer did offer decimal arithmetic (binary decimal

coded number) and proved to be inefficient

 In any base the value of the ith digits d is: d basei, where i starts at 0 and

increases from right to left

 Example: (1011)2 = (1 23)10 + (0 22) 10 + (1 21) 10 + (1 20) 10

31 30 29 28

=
27 26 25 24

8 + 0
23 22 21 20 19 18 17 16

+
15 14 13 12

2 +
11 10 9 8

1 = (11)10

7 6 5 4 3 2 1 0

0 1 0 1 1

(32 bits wide)

Least significant bitMost significant bit

 The MIPS word is 32 bit long 232 different numbers could be represented

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 4

(0000 0000 0000 0000 0000 0000 0000 0000)2 = (0) 10

(0000 0000 0000 0000 0000 0000 0000 0001)2 = (
…………………… …

1) 10

(1111 1111 1111 1111 1111 1111 1111 1110)2 = (4, 294, 967, 294)10

(1111 1111 1111 1111 1111 11111111 1111)2 = (4, 294, 967, 295) 10

ASCII versus Binary Numbers

Computers were invented to crunch numbers, but very soon after

they were used to process text

Most computers today use 8-bit bytes to represent characters using

the American Standard Code for Information Exchange (ASCII)

If numbers are represented as strings of ASCII digits they will need

significantly larger storage and arithmetic operations will be very slow

 Example:

What is the expansion in storage if the number 1 billion is

represented in ASCII versus 32-bit integer?

1 billion = 1, 000, 000, 000 it would need 10 ASCII digits (bytes)

Thus the storage expansion = (10 digits 8 bits) / 32 = 2.5

Computer professionals are raised to believe that binary is natural

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 5

Sign and Magnitude Representation
 Computer programs calculate both positive & negative numbers

and thus the the number representation has to distinguish both

 In sign and magnitude representation, a single bit is designated

either on the left or the right of the number to indicate its sign

 Although the sign and magnitude representation is very simple,

yet it has multiple shortcomings:

 It is not obvious where to put the sign bit: to the right or the left?

 Adders may need an extra step to set the sign

 A separate sign bit means that there will be a positive and negative zero

 Example:

(+ 13)10 = (01101)2 sign/magnitude (- 13) 10 = (11101)2 sign/magnitude

Sign and magnitude was shortly abandoned after their early use

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 6

Two’s Complement Representation

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 7

 The two's complement of a number X represented in n bits is 2n - X

 Negative numbers would always have one in the most significant bit

 easy to be tested by hardware

 Advantages:

✓ There is only one zero in the two's complement

representation (programmer happy)

✓ Simple hardware design for arithmetic and logical

operations (Designer happy)

 Disadvantage:

 Most positive number is 2n-1-1, while least negative number is -

2n-1 (programmer unhappy)

 To compute the decimal value of a 32-bit two's compliment number the

following formula could be used:

(X31 -231) + (X30 230) + (X29 229) + …. + (X1 21) + (X0 20)

Example: (1111 1111 1111 1111 1111 1111 1111 1100)2

= (1 -231) + (1 230) + (1 229) + …. + (1 22) + (0 21) + (0 20)

= (- 4)10

(0000 0000 0000 0000 0000 0000 0000 0000)2 = (0) 10

(0000 0000 0000 0000 0000 0000 0000 0001)2 = (1) 10

(0000 0000 0000 0000 0000 0000 0000 0001)2 = (2) 10

…………………… …

(0111 1111 1111 1111 1111 1111 1111 1101)2 = (2, 147, 483, 645) 10

(0111 1111 1111 1111 1111 1111 1111 1110)2 = (2, 147, 483, 646) 10

(0111 1111 1111 1111 1111 1111 1111 1111)2= (2, 147, 483, 647) 10

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 8

(1000 0000 0000 0000 0000 0000 0000 0000)2 = (- 2, 147, 483, 648) 10

(1000 0000 0000 0000 0000 0000 0000 0001)2 = (- 2, 147, 483, 647) 10

(1000 0000 0000 0000 0000 0000 0000 0010)2 = (- 2, 147, 483, 646) 10

…………………… …

(1111 1111 1111 1111 1111 1111 1111 1101)2 =(- 3) 10

(1111 1111 1111 1111 1111 1111 1111 1110)2 =(- 2) 10

(1111 1111 1111 1111 1111 1111 1111 1111)2 = (- 1) 10

Numbers in a MIPS’ Word

 Two's complement does have one negative number that has no

corresponding positive number

 The most positive and the least negative number are different in all bits

Quick negation for Two's Complement
Method 1:

• Convert every 10 and every 01 and then add 1 to the rest

Method 2:

 Move from right to left leave every leading 0's until reaching the first 1

 Convert every 01 and 10 afterward until reaching the left end

Example: Negate (2)10

(2) 10 = (0000 0000 0000 0000 0000 0000 0000 0010)2

Method 1: 1111 1111 1111 1111 1111 1111 1111 1101
+ 1

--

1111 1111 1111 1111 1111 1111 1111 1110

Method 2: 0000 0000 0000 0000 0000 0000 0000 0010

1111 1111 1111 1111 1111 1111 1111 1110

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 9

Shortcuts for Two's Complement

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

0

 Sign extension

 When loading numbers in a wide register, the empty bits will be filled with the

value of the sign bit

 Example: Convert 16-bit versions of (2)10 and (-2)10 to 32-bit binarynumbers

 The 16-bit binary version of the number (2)10 is (0000 0000 0000 0010)2.

If converted to a 32-bit number by making 16 copies of the value in the most

significant bit (0) and placing that in the left-hand half of the word, we get

(0000 0000 0000 0000 0000 0000 0000 0010)2

 For (-2)10 the 16-bit binary version is (1111 1111 1111 1110)2 and again by making

16 copies of the value in the most significant bit (1) and placing that in the left-

hand half of the word, we get:

(1111 1111 1111 1111 1111 1111 1111 1110)2

 Grouping Binary Numbers

 Grouping every 4 binary digits is equivalent to converting to hexadecimal

 Example: (1110 1100 1010 1000 0110 0100 0010 0000)2 = (ECA8 6420)16

(0) (0) (1) (1) (0) (Carries)

0 0 0 1 1 1

0 0 0 1 1 0

(0)0 (0)0 (0)1 (1)1 (1)0 (0)1

Addition and Subtraction

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

1

 Digits are added bit by bit from right to left, with carries passed to the next

digit to the left

 Example:

0000 0000 0000 0000 0000 0111 = 7

+ 0000 0000 0000 0000 0000 0110 = 6

--

0000 0000 0000 0000 0000 1101 = 13

 Subtraction uses addition: the appropriate operand is simply negated

 Example:
0000 0000 0000 0000 0000 0000 0000 0111 = 7

- 0000 0000 0000 0000 0000 0000 0000 0110 = 6

--

0000 0000 0000 0000 0000 0000 0000 0001 = 1

Or using two’s complement arithmetic

0000 0000 0000 0000 0000 0000 0000 0111 = 7

+ 1111 1111 1111 1111 1111 1111 1111 1010 = - 6

--

0000 0000 0000 0000 0000 0000 0000 0001 = 1

Operations Operand A Operand B Result

A + B 0 0 < 0

A + B < 0 < 0 0

A - B 0 < 0 < 0

A - B < 0 0 0

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

2

Arithmetic Overflow
Overflow occurs when the result of an operation cannot be represented with

the available hardware

Most hardware detects and signals overflow via an exception

 Some high level languages ignore overflow (e.g. C) and some check for and

handle it (e.g. Ada and Fortran)

Overflow conditions

If there is either carry-in or carry-out (not both) for the sign bit

 Example:

Assuming 4 bits 2's complement numbers, the maximum positive number is 7 and

the least number is -8. Adding the numbers 6 and 5 should lead to overflow and

similarly for -6 and-5.

0110 + 0101 = 1 011, 1010 + 1001 = 10011

Logical Operations
 Although words are the basic blocks for most computers, it is often needed

to operate on fields of bits within a word (check for a character)

 Logical operations are useful for bit-wise handling of words

 AND, OR and shift operations are the most famous supported operations by

instruction set architectures

 Shift operations are either right (divide), filling with the sign bit or left

(multiply), filling in with zeros

Examples: (0000 0010)2 << 2

(1111 1110)2 << 2

(0000 0010)2 >> 1

(1111 1110)2 >> 1

 (0000 1000)2

 (1111 1000)2

 (0000 0001)2

 (1111 1111)2

 AND and OR operations are often used to isolate and augment words with

certain field of bits

Logical operations can miss up signed numbers should be carefully used

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

3

A 1-Bit Arithmetic Unit
I npu ts O u t p u t s

a b Carr yIn C a r r yO u t S u m

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1CarryOut

CarryIn

a

Sum

b

A single bit adder has 3 inputs, two operands

and a carry-in and generates a sum bit and a

carry-out to be passed to the next 1-bit adder

CarryOut (b.CarryIn) (a.CarryIn) (a.b) (a.b.CarryIn)
 (b.CarryIn) (a.CarryIn) (a.b)

b

Sum (a.b.CarryIn) (a.b.CarryIn) (a.b.CarryIn) (a.b.CarryIn)

CarryOut

a

CarryIn

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

4

b

0

1

Result

Operation

a

1-Bit logical unit

A 1-Bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

 The multiplexor selects either a AND b,

a OR b or a + b depending on whether

the value of operation is 0, 1, or 2

 To add an operation, the multiplexor has

to be expanded & a circuit for performing

the operation has to be appended

Sum

CarryIn

CarryOut

a

b

1-Bit adder

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

5

Supporting Subtraction

0

2

R e su lt

a

1

O pe ration

CarryIn

CarryOut

0

1

Binvert

b

 Subtraction can be performed by inverting the operand and setting the

“CarryIn” input for the adder to 1 (i.e. using two’s complement)
_

The simplicity of the hardware

design of a two’s complement

adder explains why it is a

universal standard for computer

arithmetic

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

6

 By adding a multiplexor to the second operand, we can select either b or b

 The Binvert line indicates a subtraction operation and causes the two’s

complement of b to be used as an input

a b 1 a (b 1) a (b) a b

A 32-Bit ALU

Result31

a31

b31

Result0

CarryIn

a0

b0

Result1

a1

b1

Result2

a2

b2

Operation

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

7

CarryIn

ALU0

CarryOut

CarryIn

ALU1

CarryOut

CarryIn

ALU2

CarryOut

CarryIn

ALU31

 A full 32-bit ALU can be created by

connecting adjacent 1-bit ALU’s

using the Carry in and carry out lines

 The carry out of the least significant bit

can ripple all the way through the adder

(ripple carry adder)

Ripple carry adders are slow since the

carry propagates from a unit to the next

sequentially

 Subtraction can be performed by

inverting the operand and setting the

“CarryIn” input for the whole adder to 1

(i.e. using two’s complement)

Supporting MIPS’ “slt” instruction

Set

Result0

Result1

Result2

a0

b0

a2

b2

0

Result31

Overflow

Binvert CarryIn Operation

CarryIn

Less

CarryIn

ALU0

CarryOut

Less

a1 CarryIn

b1 ALU1

0

CarryOut

Less

CarryIn

ALU2

CarryOut

a31 CarryIn

b31 ALU31

0 Less

0

3

Result

Operation

a

1

CarryIn

0

1

Binvert

b 2

Less

Set

Overflow

detection
Overflow

0

3

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b 2

Less

Most Significant Bit

Basic 1-Bit ALU

-“Less” input support

the “slt instruction

-“slt” produce 1 only if

rs<rt and 0 otherwise

32-Bit Basic MIPS ALU

Most Significant Bit

-a < b iff (a-b) < 0

(value of sign bit is 1)

-Checks for overflow

- Sets the least

significant bit to the

value of sign bit

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

8

Set

Result0

Result1

Result2

Operation

a31

b31

0

a0

b0

a2

b2

0

Result31

Overflow

Bnegate

Zero

CarryIn

ALU0

Less

CarryOut

a1 CarryIn

b1 ALU1

0 Less

CarryOut

CarryIn

ALU2

Less

CarryOut

CarryIn

ALU31

Less

MIPS’ ALU
Conditional Branching

-“bne” and “beq” instruction

compares two operands for

equality

-a = b iff (a-b) = 0

- Zero signal indicates all

zero results

ALU

Zero

Result

Overflow

a

b

ALU operation

CarryOut

ALU SymbolMIPS’ ALU Circuits

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 191

9

Ripple Carry Adders

 The CarryIn input depends on the operation in the adjacent 1-bit adder

 The result of adding most significant bits is only available after all other bits,

i.e. after n-1 single-bit additions

 The sequential chain reaction is too slow to be used in time-critical hardware

Carry Lookahead

 Anticipate the value of the carry ahead of time

 Worst-case scenario is a function of log2 n (the number of bits in the adder)

 It takes many more gates to anticipate the carry

Fast Carry Using "Infinite" Hardware

Using the equation:

c2 = (b1 . c1) + (a1 . c1) + (a1 . b1)

c1 = (b0 . c0) + (a0 . c0) + (a0 . b0)

Substituting the definition of c1 in c2 equation

c2 = (a1 . a0 . b0) + (a1 . a0 . c0) + (a1 . b0 . c0) + (b1 . a0 . b0) +

(b1 . a0 . c0) + (b1 . b0 . c0) + (a1.b1)

 Number of gates grows exponentially when getting to higher bits in the adder

Optimizing Adder’s Design

COut (b.Cin) (a.Cin) (a.b)

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

0

a b c-out

0 0 0 “kill”

1 1 c-in “propagate”

2 0 c-in “propagate”

1 1 1 “generate”

p = a or b

g = a and b

a0 S

b0

a1

b1

S
g
p

a2

b2

S

a3

b3

S

c-in

c1 =g0 + c0 p0

c2 = g1 + g0 p1 + c0 p0 p1

c3 = g2 + g1 p2 + g0 p1 p2 + c0 p0 p1 p2

g

p

g
p

g
p

g
p

ci+1 = (bi . ci) + (ai . ci) + (ai . bi)

= (ai . bi) + ci . (ai + bi)

= gi + ci . pi

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

1

Carry Lookahead (propagate &

generate)

* Figure is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

2

C

L

A

4-bit

Adder

4-bit

Adder

4-bit

Adder

C2 = G1 + G0 P1 + C0 P0 P1

C3 = G2 + G1 P2 + G0 P1 P2 + C0 P0 P1 P2

G

P

G0
P0
C1 =G0 + C0 P0

C4 = . . .

C0

Cascaded Carry Look-ahead

Consider a 4-bit adder with its carry

lookahead logic as a building block

Connect the 4-bit adders in ripple

carry fashion

 Carry lookahead is done at a high level

P0 = p3. p2. p1. p0

P1 = p7. p6. p5. p4

….

G0 = g3 + (p3.g2) + (p3.p2.g1) + (p3.p2.p1.g0)

G1 = g7 + (p7.g6) + (p7.p6.g5) + (p7.p6.p5.g4)

….

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

3

An Example

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

4

Determine gi, pi, Pi, Gi and carry out (C4) values for these two 16-bit numbers:

a:

b:

Answer:

0001 1010 0011 0011

1110 0101 1110 1011

Using the formula gi = (ai . bi) and pi = (ai + bi)

gi : 0000 0000 0010 0011

pi : 1111 1111 1111 1011

The “super” propagates (P0 , P1 , P2 , P3) are calculated as follows:

P0 = p3. p2. p1. p0 = 0

P2 = p11. p10. p9. p8 = 1

P1 = p7. p6. p5. p4 =1

P3 = p15. p14. p13. p12 =1

The “super” generates (G0 , G1 , G2 , G3) are calculated as follows:

G0 = g3 + (p3.g2) + (p3.p2.g1) + (p3.p2.p1.g0) = 0

G1 = g7 + (p7.g6) + (p7.p6.g5) + (p7.p6.p5.g4) = 1

G2 = g11 + (p11.g10) + (p11.p10.g9) + (p11.p10.p9.g8) = 0 G3 =

g15 + (p15.g14) + (p15.p14.g13) + (p15.p14.g13.g12) = 0

Finally carry-out (C4) is:

C4 = G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0) + (P3.P2.P1.P0.C0) = 1

CarryIn

Result0--3

CarryIn

Result4--7

CarryIn

Result8--11

CarryIn

CarryOut

Result12--15

CarryIn

C1

C2

C3

C4

ALU0
P0
G0

ALU1
P1
G1

ALU2
P2
G2

ALU3
P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

pi + 2
gi + 2

pi + 3
gi + 3

ci + 4

a0
b0
a1
b1
a2
b2
a3
b3

a4
b4
a5
b5
a6
b6
a7
b7

a8
b8
a9
b9

a10
b10
a11
b11

a12
b12
a13
b13
a14
b14
a15
b15

Carry-lookahead u

Speed of Carry Generation

b

C a r r y O u t

a It takes two gates

delay for carry-out

to be available in a

single bit adder

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

5

 There is a (gate) delay for an output to be

ready once input signals are applied to a gate

 Time is estimated by simply counting

the number of gates along the longest

path

Carry lookahead is faster because less

cascaded levels of logic gates are used

 For a 16-bit ripple carry adder, carry-out is

subject to 32 (16 2 for 1 -bit adder) gate

 Cascaded carry lookahead (C4) is delayed

by only 5 gates (1 for p and g, 2 for G and 2

for C4) in a 16-bit adder
C a r r y In

Conclusion

 Summary

Constructing an Arithmetic Logic Unit

(Different blocks and gluing them together)

 Scaling bit operations to word sizes

(Ripple carry adder, MIPS ALU)

Optimization for carry handling

(Measuring performance, Carry lookahead)

 Next Lecture

 Algorithms for multiplying unsigned numbers

 Booth’s algorithm for signed number multiplication

 Multiple hardware design for integer multiplier

Read sections (B.1 – B.6) in 5rd Ed., or (3.1, C.5-C.6) in 4th Ed. Of the textbook

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

6

