
CMSC 411

Computer Architecture

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

Lecture 3

Addressing Mode & Architectural

Design Guidelines

Lecture’s Overview

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

 Previous Lecture:

• Instruction set architecture and CPU operations
(The stored-program concept)

• Instruction types, operands and operations
(R-type and I-type MIPS instructions format)

• Decision making and repetition of instruction execution
(bne, beq and j instructions)

• Supporting procedure and context switching
(Stack operations, nested procedure call, jal and jr instructions)

 This Lecture:

• Other styles of MIPS addressing

• Program starting steps

• Architectural design guidelines

MIPS Arithmetic Instructions

• MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

• Each arithmetic instruction performs only one operation

• Each arithmetic instruction fits in 32 bits and specifies exactly

three operands

destination source1 op source2

• Operand order is fixed (destination first)

• Those operands are all contained in the datapath’s register file

($t0,$s1,$s2) – indicated by $

* Slide is courtesy of Mary Jane Irwin

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 3

MIPS Memory Access Instructions

* Slide is courtesy of Mary Jane Irwin

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 4

• MIPS has two basic data transfer instructions for accessing

memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

• The data is loaded into (lw) or stored from (sw) a register in the

register file – a 5 bit address

• The memory address – a 32 bit address – is formed by adding

the contents of the base address register to the offset value

– A 16-bit field meaning access is limited to memory locations within a

region of 213 or 8,192 words (215 or 32,768 bytes) of the address in the

base register

– Note that the offset can be positive or negative

MIPS Instruction format

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 Register-format instructions:

op:

rs:

rt:

rd:

shmat:

funct:

Instruction Format op rs rt rd shamt funct address

add R 0 reg reg reg 0 32 N/A

sub R 0 reg reg reg 0 34 N/A

lw I 35 reg reg N/A N/A N/A address

sw I 43 reg reg N/A N/A N/A address

op rs rt rd sham t funct
6 bits 5 bits 5 bits 5 bits 5 bits

Basic operation of the instruction, traditionally called opcode

The first register source operand

The second register source operand

The register destination operand, it gets the result of the operation

Shift amount (explained in future lectures)

This field selects the specific variant of the operation of the op field

6 bits

op rs rt immediate

 Immediate-type instructions:

6 bits 5 bits 5 bits 16 bits

• Some instructions need longer fields than provided for large value constant

• The 16-bit address means a load word instruction can load a word within

a region of 215 bytes of the address in the base register

• Example: lw $t0, 32($s3) # Temporary register $t0 getsA[8]

Constant or Immediate Operands
 Use of constants is common in programs, e.g. incrementing an index of an

array, counting loop iterations, etc.

 In the C compiler "gcc", 52% of arithmetic operands involve constants while

in the circuit simulation program "spice" it is 69%

 Inefficient support:
Use memory address (AddrConstant4) to reference a stored constant
lw $t0, AddrConstant4($zero)

add $sp, $sp, $t0

$t0 = constant 4

$sp = $sp + 4

MIPS handles 16-bit constant efficiently by including the constant value in

the address field of an I-type instruction (Immediate-type)

addi $sp, $sp, 4 #$sp = $sp + 4

 For large constants that need more than 16 bits, a load upper-immediate (lui)

instruction is used to concatenate the second part

 The compiler or the assembler break large constants into 2 pieces and

reassemble them in a register

001111 00000 01000 0000 0000 1111 1111

0000 0000 1111 1111 0000 0000 0000 0000

lui $t0, 255

Contents

of $t0 after

execution

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Addressing in Branches & Jumps

32

 I-type instructions leaves only 16 bits for address reference limiting the size

of the jump

MIPS branch instructions use the address as an increment to the PC

allowing the program to be as large as 2 (called PC-relative addressing)

 Since the program counter gets incremented prior to instruction execution,

the branch address is actually relative to (PC + 4)

 MIPS also supports an J-type instruction format for large jump instructions

op address

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

6 bits 26 bits

 The 26-bit address in a J-type instruct., extended to 28, is concatenated to
upper 4 bits of PC

35 10 8 15

. . .

0 19 19 9 0 32

0 9 9 9 0 32

0 9 22 9 0 32

35 9 8 0

5 8 21 8

0 19 20 19 0 32

2 80000

Loop: add $t1, $s3, $s3 80000

add $t1, $t1, $t1 80004

add $t1, $t1, $s6 80008

lw $t0, 0($t1) 80012

bne $t0, $s5, Exit 80016

add $s3, $s3, $s4 80020

j Loop 80024

Exit: 80028

80032

Aside: MIPS Register Convention
Name Register

Number

Usage Preserve

on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes
* Slide is courtesy of Mary Jane Irwin

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

B y t e H a l f w o r d W o r d

R eg i s t e r s

M e m o r y

M e m o r y

W o r d

M e m o r y

W o r d

R eg i s t e r

R eg i s t e r

1 . I m m e d i a t e a d d r e s s i n g

3 . B a s e a d d r e s s i n g

4 . P C - r e l a t i v e a d d r e s s i n g

5 . P s e u d o d i r e c t a d d r e s s i n g

2 . R eg i s t e r a d d r e s s i n g

o p r s r t

o p

o p r s r t A d d r e s s

o p r s r t A d d r e s s

A d d r e s s

rd . . . f u n c t

o p r s r t I m m e d i a t e

P C

P C

+

+

Summary of MIPS Addressing Modes

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Concatenation

Starting a Program

A s s e m b le r

A s s e m b ly language p r o g r a m

Comp i le r

C p r o g r a m

Execu tab le : Ma c h in e l a n g u ag e p r o gr a m

L o a d e r

M e m o r y

Ob jec t : Ma c h in e la n g u a ge m o d u le Ob jec t : L ib ra ry rou t ine (m a c h in e language)

- Place code & data modules

symbolically in memory

-Determine the address of data &

instruction labels

-Patch both internal & external ref.

Object files for Unix typically contains:

Header: size & position of components

Text segment: machine code

Data segment: static and dynamic variables

Relocation info: identify absolute memory ref.

Symbol table: name & location of labels,

procedures and variables

Debugging info: mapping source to object

code, break points, etc.

LiLnin kkeer r

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Linking

Object Files

Object file header
Name Procedure A

Text size 100hex

Data size 20hex

Text segment Address Instruction

0 lw $a0, 0($gp)

4 jal 0

… …

Data segment 0 (X)

…. …

Relocation Info Address Instruction type Dependency

0 lw X

4 jal B

Symbol table Label Address

X -

B -

Object file header
Name Procedure B

Text size 200hex

Data size 30hex

Text segment Address Instruction

0 lw $a0, 0($gp)

4 jal 0

… …

Data segment 0 (Y)

…. …

Relocation Info Address Instruction type Dependency

0 lw Y

4 jal A

Symbol table Label Address

Y -

A -

Executable file header
Text size 300hex

Data size 50hex

Text segment Address Instruction

0040 0000hex lw $a0,8000hex($gp)

0040 0004hex jal 40 0100hex

… …

0040 0100hex lw $a1,8020hex($gp)

0040 0104hex jal 40 0000hex

… …

Data segment Address

1000 0000hex (X)

… …

1000 0020hex (Y)

… …

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Assuming the value in $gp is 1000 8000hex

$sp

$gp

0040 0000
hex

0

1000 0000 hex

Text

Static data

Dynamicdata

Stack
7fff ffff

hex

1000 8000
hex

pc

Reserved

Loading Executable Program

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

To load an executable, the operating system

follows these steps:

 Reads the executable file header to

determine the size of text and data segments

 Creates an address space large enough for

the text and data

 Copies the instructions and data from the

executable file into memory

 Copies the parameters (if any) to the main

program onto the stack

 Initializes the machine registers and sets the

stack pointer to the first free location

Jumps to a start-up routines that copies the

parameters into the argument registers and

calls the main routine of the program

Classifying Instruction Set Architectures

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 Accumulator Architecture
Common in early stored-program computers when hardware was so expensive

Machine has only one register (accumulator) involved in all math. & logical operations

All operations assume the accumulator as a source operand and a destination for the

operation, with the other operand stored in memory

 Extended AccumulatorArchitecture
 Dedicated registers for specific operations, e.g., stack and array index registers, added

 The 8086 microprocessor is a an example of such special-purpose register arch.

 General-Purpose Register Architecture
 MIPS is an example of such arch. where registers are not sticking to play a single role

 This type of instruction set can be further divided into:

 Register-memory: allows for one operand to be in memory

 Register-register (load-store): demands all operands to be in registers

Machine # general-purpose

registers

Architecture style Year

Motorola 6800 2 Accumulator 1974

DEC VAX 16 Register-memory, memory-memory 1977

Intel 8086 1 Extended accumulator 1978

Motorola 68000 16 Register-memory 1980

Intel 80386 32 Register-memory 1985

PowerPC 32 Load-store 1992

DEC Alpha 32 Load-store 1992

Compact Code and Stack Architectures

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

When memory is scarce, machines, like Intel 80x86 had variable-length

instructions to match varying operand specifications and minimize code size

Stack machines abandoned registers altogether arguing that it is hard for

compilers to use them efficiently

Operands are to be pushed on a stack from memory and the results have to

be popped from the stack to memory

Operations take their operand by default from the top of the stack and insert

the results back onto the stack

Stack machines simplify compilers and lent themselves to a compact

instruction encoding

Example: A = B + C

Push AddressC

Push AddressB

add

PopAddressA

Top=Top+4; Stack[Top]=Memory[AddressC]

Top=Top+4; Stack[Top]=Memory[AddressB]

Stack[Top-4]=Stack[Top]+Stack[Top-4]; Top=Top-4

Memory[AddressA]=Stack[Top]; Top=Top-4

Compact code is important for heralded network computers where programs

must be downloaded (e.g. Java-based applications) or space communications

Famous ISA

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Other types of Architecture

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 High-Level-Language Architecture

 In the 1960s, systems software was rarely written in high-level languages and virtually

every commercial operating system before Unix was written in assembly

Some people blamed the code density on the instruction set rather than the

programming language

A machine design philosophy was advocated with the goal of making the hardware

more like high-level languages

The effectiveness of high-level languages, memory size limitation and lack of efficient

compilers doomed this philosophy to a historical footnote

 Reduced Instruction Set Architecture

With the recent development in compiler technology and expanded memory sizes less

programmers are using assembly level coding

 Instruction set architecture became measurable in the way compilers rather

programmable use them

RISC architecture favors simplifying hardware design over enriching instruction

offering relying on compilers to effectively use them to perform complex operations

Virtually all new architecture since 1982 follows the RISC philosophy of fixed

instruction lengths, load-store operations, and limited addressingmode

 Simplicity favors regularity

 Limited number of register formats

 Fixed number of operands

 Smaller is faster

 Increased number of registers lengthen signalpaths

 Signals take longer when travelling farther increasing clock cycle time

 It is not an absolute rule, 31 registers may not be faster than 32 registers

 Designers balance the craving of programs for more registers and the desire to

keep the clock cycle fast

 Good design demands good compromises

 Fixed length instructions requires different formats for different instructions’kinds

 Group the operation codes of instructions of similar format to simplify decoding

 Restrict the variation of different formats to limited number of fields and sort them

to a predictable order

Make the common case fast

 Include program counter based addressing to speed up conditionalbranching

 Offer immediate addressing for constant operands

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Principles of Hardware Designs

Conclusion
 Summary

 Various styles of MIPS addressing

(Register, displacement, immediate, PC-relative and pseudo-direct)

 Program starting steps

(Compiler, Assembler, Linker, Loader)

 Architectural design guidelines

(keep it simple, focus on common cases, smart compromises)

 Next Lecture

Why measuring computer performance is important

 Different performance metrics

 Performance comparison

Reading assignment is sections 2.8, 2.9, and 2.15 in textbook

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

