
CMSC 411

Computer Architecture

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

Lecture 2

Instructions Semantics &

Representation

cs.umbc.edu/courses/undergraduate/411

/spring18/park/

http://www.csee.umbc.edu/~younis/CMPE411/

Lecture’s Overview

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

 Previous Lecture:

• What computer architecture is and why it is important to study

• Organization and anatomy of computers

• The impact of microelectronics technology on computers

• The evolution of the computer industry and generations

 This Lecture:

• Instruction set architecture and CPU operations

• Instruction types, operands and operations

• Decision making and repetition of instruction execution

• Supporting procedure and context switching

Introductions

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 3

 To command computer's hardware, you must speak its language

 The words of a machine's language are called instructions, andits

vocabulary is called instructionset

 Once you learn one machine language, it is easy to pick upothers:

There are few fundamental operations that all computersmust

provide

All designers have the same goal of finding a language thatsimplifies

building the hardware and the compiler while maximizing

performance and minimizing cost

 Learning how instructions are represented leads to discovering the

secret of computing: “the stored-program concept”

 The MIPS instruction set is used as a casestudy

 MIPS is commercialized by Imagination Technologies (http://www.imgtec.com/)

 Popular choice in the embedded core market

- Applications in consumer electronics, printers storage devices, digital

cameras, etc.

http://www.imgtec.com/)

Instruction Set Architecture (ISA)

* Slide is courtesy of Mary Jane Irwin

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 4

 ISA: An abstract interface between the hardware and the lowest level

software of a machine for encompassing all the information necessary

to write a machine language program that will run correctly, including

instructions, registers, memory access, I/O, and so on.

“... the attributes of a [computing] system as seen by the

programmer, i.e., the conceptual structure and functional

behavior, as distinct from the organization of the data flows and

controls, the logic design, and the physical implementation.”

– Amdahl, Blaauw, and Brooks, 1964

– Enables implementations of varying cost and performance to run

identical software

 ABI (application binary interface): The user portion of the instruction

set plus the operating system interfaces used by application

programmers. Defines a standard for binary portability across

computers.

ISA Type Sales

0

200

400

600

800

1000

1200

1400 Other

SPARC

Hitachi SH

PowerPC

Motorola
68K
MIPS

IA-32

ARM

* Slide is courtesy of Mary Jane Irwin

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 5

1998 1999 2000 2001 2002

PowerPoint “comic” bar chart with approximate values

M
il

li
o

n
s

 o
f

P
ro

c
e

s
s

o
r

Operations of the Computer Hardware

sub

Mohamed Younis

f, t0, t1 # f = t0 - t1 = (g + h) - (i + j)

CMPE 411, Computer Architecture 6

“There must certainly be instructions for performing the

fundamental arithmetic operations.”

Burkes, Goldstine and Von Neumann, 1947

 Assembly language is a symbolic representation of what the

processor actually understand

MIPS assembler allows only one instructions/line and ignore

comments following # until end of line

 Example:
Translation of a segment of a C program to MIPS assembly instructions:

C: f = (g + h) - (i + j)

MIPS:

add

add

t0, g, h

t1, i, j

temp. variable t0 contains "g + h"

temp. variable t1 contains "i + j"

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Operands of the Computer Hardware

sub

Mohamed Younis

$s0, $t0, $t1 # f = t0 - t1 = (g + h) - (i + j)

CMSC 411, Computer Architecture 7

 Registers are the bricks of computer construction

 Registers are hardware design primitives that are also visible to programmer

 The size of the registers (referred to as word) in MIPS architecture is 32 bits

 Unlike variables of a programming language, the number of registers is

limited (MIPS has 32 registers)

 Effective use of registers is a key to program performance

 The MIPS convention is to use 2 character names following a '$' to represent

registers, e.g. $s0, $s1, .. for variables and $t0, $t1, … for temp registers

 Example:

Translation of a segment of a C program to MIPS assembly instructions:

C: f = (g + h) - (i + j)

MIPS:

add

add

$t0, $s1, $s2

$t1, $s3, $s4

temp. variable t0 contains "g + h"

temp. variable t1 contains "i + j"

courtesy
Mohamed Younis

Large Structure Representation

 Example: Compiling an assignment when an operand is in memory
Let's assume that A is an array of 100 words and that the compiler has associated

the variables g and h with the registers $s1 and $s2. Let's assume that the staring

address, or base address, of the array is in $s3. The following is the compiler

translation of a segment of a C program to MIPS assembly instructions:

C:

MIPS:

g = h +A[8];

lw $t0, 32($s3) # Temporary reg. $t0 getsA[8]

 Given the limited number of registers, data

structures such as arrays are kept in memory

 The data transfer instructions that move data

from/to memory to/from a register are

traditionally called load/store (“lw” and “sw”

in MIPS standing for load/store word)

MIPS uses indirect memory reference using

a base register and a constant increment

100

10

101

1

3

2

1

0

DataAddress

MemoryProcessor

add $s1, $s2, $t0 # g = h +A[8]

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 8

Compilation & Address formation
 Compiler Role:

100

10

101

1

12

8

4

0

DataAddress

MemoryProcessor

 Associates variables with registers

 Allocates data structures like arrays in memory

 Places the proper staring address into the data

transfer instructions

 keeps most frequently used variables in registers

to save on load/store operations (spilling registers)

 keeps operands in registers to achieve the highest

performance

 Memory Addressing

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 9

 The address of a word matches the byte address of one of its 4 bytes

 The addresses of sequential words differ by 4 (word size in byte)

 words' addresses are multiple of 4 (alignment restriction)

 Byte addresses affects array index calculation: the offset to be added to the

base register $s3 must be 4 8 in order to accessA[8]

lw $t0, 32($s3) # Temporary reg. $t0 getsA[8]

 Machines that use the address of the leftmost byte as the word address is

called "Big Endian" and those that use rightmost bytes called "Little Endian"

Byte Addresses

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

• Since 8-bit bytes are so useful, most architectures address

individual bytes in memory

– The memory address of a word must be a multiple of 4 (alignment

restriction)

• Big Endian: leftmost byte is word corresponds to low address

– IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: rightmost byte is word corresponds to low address

– Intel 80x86, DEC Vax, DEC Alpha
little endian byte 0

3 2 1 0

msb lsb

0 1 2 3

big endian byte 0

* Slide is courtesy of Mary Jane Irwin

Affects only byte order storage in memory

Compiling Using a Variable Array Index

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Let's assume that A is an array of 100 words and that the compiler has associated the

variables g, h and i with the registers $s1, $s2 and $s4. Let's assume that the starting

address, or base address, of the array is in $s3. The following is the compiler translation

of a segment of a C program to MIPS assembly instructions: G = h + A[i];

First we have to ensure word alignment:

add $t1, $s4, $s4 # Temp reg $t1 = 2 * i
add $t1, $ t1, $ t1 # Temp reg $t1 = 4 * i

To get the address of A[i], we need to add $t1 to the base of A in $s3:

add $t1, $ t1, $ s3 # $t1 = address of A[i] (4 * i + $s3)

Now we can use that address to load A[i] into a temporary register:

lw $t0, 0($t1) # Temporary register $t0 gets A[i]

Finally add A[i] to h and place the sum in g:

add $s1, $s2, $t0 # g = h + A[i]

Instruction Representation

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

000000 10001 10010 01000 00000 100000

Humans are taught to think in base 10 (decimal) but numbers may be

represented in any base (123 in base 10 = 1111011 in binary or base 2)

Numbers are stored in computers as a series of high and low electronic

signals (binary numbers)

 Binary digits are called bits and considered the atom of computing

 Each piece of an instruction is a number and placing these numbers

together forms the instruction

 Assembler translate the assembly symbolic instructions into machine

language instructions (machine code)

 Example:

Assembly: add $t0, $s1, $s2

M/C language (decimal):

M/C language (binary):

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Note: MIPS compiler by default maps $s0,…,$s7 to reg. 16-23 and $t0,…,$t7 to reg. 8-15

0 17 18 8 0 32

MIPS Instruction format

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 Register-format instructions:

op:

rs:

rt:

rd:

shmat:

funct:

Instruction Format op rs rt rd shamt funct address

add R 0 reg reg reg 0 32 N/A

sub R 0 reg reg reg 0 34 N/A

lw I 35 reg reg N/A N/A N/A address

sw I 43 reg reg N/A N/A N/A address

op rs rt rd sham t funct
6 bits 5 bits 5 bits 5 bits 5 bits

Basic operation of the instruction, traditionally called opcode

The first register source operand

The second register source operand

The register destination operand, it gets the result of the operation

Shift amount (explained in future lectures)

This field selects the specific variant of the operation of the op field

6 bits

op rs rt address

 Immediate-type instructions:

6 bits 5 bits 5 bits 16 bits

• Some instructions need longer fields than provided for large value constant

• The 16-bit address means a load word instruction can load a word within

a region of 215 bytes of the address in the base register

• Example: lw $t0, 32($s3) # Temporary register $t0 getsA[8]

The Stored Program Concept

read or written just like numbers

The power of the concept:

memory can contain:

 the source code for an editor

 the compiled m/c code for the editor

 the text that the compiled program is using

 the compiler that generated the code

Processor

Accounting program

(machine code)

Editor program

(machine code)

C compiler

(machine code)

Payroll data

Book text

Source code in C

for editor program

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 Learning how instructions are represented leads to discovering

the secret of computing: “the stored-program concept”

 Today’s computers are built based on two key principles :
Instructions are represented as numbers

Memory

Programs can be stored in memory to be

Instructions for Making Decisions

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

What distinguish a computer from a simple calculator is its

ability to make decisions

 Based on input data and the values created during the

computation, different instructions are executed

 Decisions making instructions is commonly represented in

programming languages using if-statement combined with go-to

MIPS assembly language includes two conditional branching

instructions:

beq register1, register2, L1

bne register1, register2, L1

go to L1 if (register1) = (register2)

go to L1 if (register1) (register2)

 Compilers frequently create branches and labels although they

do not appear in high level programs

Compiling if-then-else
Assuming the five variables f, g, h, i,

and j correspond to the five registers

$s0 through $s4, what is the compiler

MIPS code for the following C if

statement:

if (i == j) f = g + h; else f = g - h;

i == j?

f =g– h

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

f = g + h

Else:

Exit:

i= j i j

bne $s3, $s4, Else # go to Else if i j

add

j

$s0, $s1, $s2

Exit

f = g + h (skipped if i j)

Else: sub $s0, $s1, $s2 # f = g - h (skipped if i = j)

Exit:

MIPS:

Compiling a while Loop

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Loop: add $t1, $s3, $s3 # Temp reg $t1 = 2 * i

add $t1, $ t1, $ t1 # Temp reg $t1 = 4 * i

add $t1, $ t1, $ s6 # $t1 = address of save[i]
lw $t0, 0($t1) # Temp reg $t0 = save[i]

Assume that i, j and k correspond to $s3 through $s5, and the base of the

array “save” is in $s6. what is the compiler MIPS code for the following C

segment:

while (save[i] == k) i = i + j;

MIPS:
The first step is to load save[i] into a temporary register

The next instruction performs the loop test, exiting if save[i] k

bne $t0, $s5, Exit # go to Exit if save[i] k

The next instruction add j to i:

add $s3, $s3, $s4 # i = i + j

Finally reaching the loop end

j Loop # go back to the beginning of loop

Exit:

Supporting Procedures

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 A subroutine is a tool to structure programs in order to make them easier to

understand and facilitate reuse

 Execution of a procedure follows the following steps:

 Put parameters in a place accessible to the procedure

 Transfer control to the procedure

 Acquire the storage resources needed for the procedure

 Perform the desired task

 Place the results value in a place accessible to the calling program

 Return control to the point of origin

 MIPS assembler allocate registers $a0-$a3 for argument passing, $v0-$v1

for return values and $ra for return address

 a Jump-and-link jal instruction save the address of next instruction in a

register $ra and branch to the procedure

 The hardware provides a program counter to trace instruction flow and

manage transfer of control

 The jal instruction stores PC+4 in $ra for use by the jr instruction as a return

address upon procedure completion

Parameters Passing

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 Registers can be used for passing small number of parameters

 A stack is used to spill registers of the current context and make room for the

called procedure to run and to allow for large parameters to be passed

 A stack traditionally grows from high addresses to low addresses

 Hardware dedicates a register as stack pointer for stack memory reference

 Upon returning from a procedure the caller needs to retrieve the old values

of registers (machine status) to resume execution of using its context

 There is no “Push” and “Pop” instructions in MIPS requiring manual stack

management (adjusting the pointer)

 For nested procedure calls, original parameters and $ra has to be stored in

by the caller in the stack

Preserved Not preserved

Save registers: $s0-$s7 Temporary registers: $t0-$t9
Stack pointer register: $sp Argument registers: $a0-$a3

Return address register: $ra Return value registers: $v0-$v1

Stack above the stack pointer Stack below the stack pointer

$sp

$sp

$sp

High address

Low address a. b. c.

Contents of register $t1

Contents of register $t0

Contents of register $s0

An Example
Let’s convert the following C

segment into a procedure:

int leaf_example (int g, int h,
int I, int j) {

int f;
f= (g + h) - (i +j);
return f;

}

MIPS: Leaf_example:

sub $sp, $sp, 12

sw $t1, 8($sp)

sw $t0, 4($sp)

sw $s1, 0($sp)

…..

lw $t1, 8($sp)

lw $t0, 4($sp)

lw $s1, 0($sp)

add $sp, $sp, 12

jr $ra

adjust stack to make room for 3 items

save register $t1 for use afterwards

save register $t0 for use afterwards

save register $s1 for use afterwards

procedure body

restore register $s1 for caller

restore register $t0 for caller

restore register $t1 for caller

adjust stack to delete the 3 items

jump back to calling routine

Saving

Caller ’s

Context

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Restoring

Caller’s

Context

b .

$ s p

$ s p

$ s p

c .

$ fp

$ fp

$ fp

a .

L o w a d d r e s s

S a v e d a r g u m e n t

r e g i s t e r s (i f a n y)

S a v e d r e t u r n a d d r e s s

S a v e d s a v e d

r e g i s t e r s (i f a n y)

L o c a l a r r a y s a n d

s t r u c t u r e s (i f a n y)

Allocating Space for New Data
 The stack is also used to store variables and arrays local to the procedure

 The segment of the stack containing a procedure’s saved registers and

local variables is called a procedure frame or activation record

 Some MIPS software uses a frame pointer ($fp) to point to the first word of

the frame of a procedure

A frame pointer offers a stable base reference to local variables since the

stack pointer changes throughout the procedure’s execution
H i g h a d d r e s s

Before During After

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Conclusion
 Summary

 Instruction set architecture and CPU operations
(The stored-program concept)

 Instruction types, operands and operations
(R-type and I-type MIPS instructions format)

 Decision making and repetition of instruction execution
(bne, beq and j instructions)

 Supporting procedure and context switching
(Stack operations, nested procedure call, jal and jr instructions)

 Next Lecture

 Other styles of MIPS addressing

 Program starting steps

 An example to put all together

Reading assignment is sections 2.1, …,2.7 in the textbook

courtesy
Mohamed Younis

CMSC 411, Computer Architecture

