CMPE 411 Computer Architecture

Introduction and Overview

Web page

- Course information will primarily be made available on the department course tree:
cs.umbc.edu/courses/undergraduate/411/spring18/park/

Course Workload

- Homeworks

- 4-5 homeworks will be assigned throughout the term, and will comprise 20% of your final grade
- The homeworks will each typically require about 2-3 hours to perform
- Homeworks are due in class on the due date (not later)
\square Exams
- A midterm exam will be given in the week before spring break, worth 20% of your final grade
- The final exam is scheduled for May $17^{\text {th }}$ during UMBC specified hours
- The final will be cumulative, but will be weighted towards the material since the midterm
- It will be worth 30% of your final grade

Course Workload (cont)

\square Proiect

- A design project will be assigned in the second half of the course, worth 30% of your final grade
- The project involves architecture simulation and performance analysis
- The project must be finished and submitted on time to earn a grade

Grade structure and policy

	Grade distribution	Course grade	Range
Final Exam	30%	A	$>=89.5 \%$
Mid-term Exam	20%	B	$>=79.5 \%,<89.5 \%$
Project	30%	C	$>=69.5 \%,<79.5 \%$
Homework	20%	D	$>=59.5 \%<69.5 \%$

- Assignments are due in class (Late assignments are not accepted)
- UMBC rules apply to cheating/copying
- You may discuss the homework and the project
- You must do your own work and not copy from anyone else
- Copying/cheating will result in a minimum punishment of a zero grade for the assignment or project, or a full letter grade drop, whichever is greater

Introduction \& Motivation

- Computer systems are responsible for almost 10% of the gross national product of the US
- Has the transportation industry kept pace with the computer industry, a trip from NY to London would take a second and cost a penny (used to be "coast to coast would take 5 seconds and cost 50 cents" in previous edition!)
- WWW, DNA mapping, smartphones are some applications that were economically infeasible but became practical
- Cashless society, anywhere computing, self-driving cars and intelligent highways, mobile health care... are the next computer sci-fi dreams on their way to become a reality
- Computer architecture has been at the core of such technological development and is still on a forward move

What is "Computer Architecture"?

- Instruction set architecture deals with the functional behavior of a computer system as viewed by a programmer (like the size of a data type -32 bits to an integer).
- Computer organization deals with structural relationships that are not visible to the programmer (like clock frequency or the size of the physicalmemory).
- The Von Neumann model is the most famous computer organization

Computer Architecture

- Interfaces
- Compiler/System View
- "Building Architect"

Machine Organization

- Hardware Components
- Logic Designer’s View
- "Construction Engineer"

Instruction Set Architecture

... the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure and functional behavior, as distinct from the organization of the data flows and controls the logic design, and the physical implementation. - Amdahl, Blaaw, and Brooks, 1964
-- Organization of Programmable Storage
-- Data Types \& Data Structures:
Encoding \& Representation
-- Instruction Set
-- Instruction Formats
-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions
The instruction set architecture distinguishes the semantics of the architecture from its detailed hardware implementation

The Instruction Set: a Critical Interface

Examples:

- DEC Alpha (v1, v3)

1992-1997

- HP PA-RISC (v1.1, v2.0)
- Sun Sparc (v8, v9)

1986-1996

- SGI MIPS (MIPS I, II, III, IV, V)

1987-1995

- Intel (8086,80286,80386, 80486,Pentium, MMX, ...) 1978-2000

The instruction set can be viewed as an abstraction of the H/W that hides the details and the complexity of the H/W

MIPS R3000 Instr. Set Arch. (Summary)

Instruction Categories

- Load/Store
- Computational
- Jump and Branch
- Floating Point
- coprocessor
- Memory Management
- Special

Registers

3 Instruction Formats: all 32 bits wide

OP	rs	rt	rd	sa	funct
OP rs rt immediate OP					

Machine Organization

- Capabilities \& performance characteristics of principal functional units (e.g., Registers, ALU, Shifters, Logic Units, ...)
- Ways in which these components are interconnected

Logic Designer's View
ISA Level

Functional Units \& Interconnect

- Information flows between components
- Logic and means by which such information flow is controlled
- Choreography of functional units to realize the instruction set architecture

- Register Transfer Level Description

Example Organization

- TI SuperSPARC ${ }^{\text {tm }}$ TMS390Z50 in Sun SPARCstation20

Levels of Behavior Representation

Machine Interpretation
Control Signal Specification
\square

$$
\begin{aligned}
& \text { temp }=v[\mathrm{k}] ; \\
& \mathrm{v}[\mathrm{k}]=\mathrm{v}[\mathrm{k}+1] \\
& \mathrm{v}[\mathrm{k}+1]=\text { temp; }
\end{aligned}
$$

$$
\text { lw } \quad \$ 15,0(\$ 2)
$$

$$
\text { lw } \quad \$ 16,4(\$ 2)
$$

$$
\mathrm{sw}, \quad \$ 16,0(\$ 2)
$$

$$
\mathrm{sw}, \quad \$ 15,4(\$ 2)
$$

0000	1001	1100	0110	1010	1111	0101	1000
1010	1111	0101	1000	0000	1001	1100	0110
1100	0110	1010	1111	0101	1000	0000	1001
0101	1000	0000	1001	1100	0110	1010	1111

ALUOP[0:3] <= InstReg[9:11] \& MASK

Levels of Abstraction

\square S/W and H/W consists of hierarchical layers of abstraction, each hides details of lower layers from the above layer
The instruction set arch. abstracts the H/W and S/W interface and allows many implementation of varying cost and performance to run the same S/W

General Computer Organization

Every piece of every computer, past and present, can be placed into input, output, memory, datapath and control
\square The design approach is constrained by the cost and size and capabilities required from every component
\square An example design target can be 25% of the cost for Processor, 25% of the cost for minimum memory size, leaving the remaining budget for I/O devices, power supplies, and chassis

PC Motherboard: A Close Look

* Slide is (partially) courtesy of Mary Jane Irwin

Inside the Pentium 4 Processor Chip

Forces on Computer Architecture

\square Programming languages might encourage architecture features to improve performance and code size, e.g. Fortran and Java
O Operating systems rely on the hardware to support essential features such as semaphores and memory management

Technology always raises the bar for what could be done and changes design's focus
\square Applications usually derive capabilities and constrains, e.g. embedded computing
\square History always provides the starting point and filter out mistakes

Technology => dramatic change

\square Processor
\rightarrow logic capacity: about 30% increase per year
\rightarrow clock rate: about 20% increase per year
Higher logic density gave room for instruction pipeline \& cache
\square Memory
\rightarrow DRAM capacity: about 60% increase per year ($4 x$ every 3 years)
\rightarrow Memory speed: about 10\% increase per year
\rightarrow Cost per bit: about 25% improvement per year
Performance optimization no longer implies smaller programs
\square Disk
\rightarrow Capacity: about 60% increase per year
Computers became lighter and more power efficient

Technology Impact on Processors

- In ~1985 the single-chip processor and the single-board computer emerged
- In the 2004+ timeframe, multi-core processors with increased parallelism

Processor Performance Increase (SPEC)

Performance now improves 50% per year ($2 x$ every 1.5 years)

Relying on technology alone would have kept us 8 years behind

Computers in the Market

- Desktop computers
- General purpose, variety of software
- Subject to performance and cost tradeoff
- Server computers
- Network based
- High capacity, performance, reliability
- Range from low-end to very powerful machines
- Embedded computers
- Hidden as components of systems
- Stringent power, cost, and performance constraints
- Cell phones, TV, cars, etc.

Where is the Market going?

\square Cell Phones \square PCs \square TVs

Any where computing and computers every where are not that far away?

Where is the Market going?

\square Tablets and smart phones reflect the PostPC era, versus personal computers and traditional cell phones.
Tablets have fastest growth, nearly doubling between 2011 and 2012.

Any where computing and computers every where are a reality

Technology Impact on DRAM

- DRAM capacity has been consistently quadrupled every 3 years, a 60\% increase per year, resulting over 16,000 times in 20 years (recently slowed down doubling every 2 years or 4 times every 4 years)
- Processor organization is becoming a main focus of performance optimization
- Technology advances got H/W designer to focus not only on performance but also on functional integration and power consumption (e.g. system on a chip)
- Programming is more concerned with cache and no longer constrained by the RAM size

Year	Size(Mb)
1980	0.0625
1983	0.25
1986	1
1989	4
1992	16
1996	64
2000	256

Integrated Circuits: Fueling Innovation

- The manufacture of a chip begins with silicon, a substance found in sand
- Silicon does not conduct electricity well and thus called semiconductor
- A special chemical process can transform tiny areas of silicon to either:

1. Excellent conductors of electricity (like copper)
2. Excellent insulator from electricity (like glass)
3. Areas that can conduct or insulate under a special condition (a switch)

- A transistor is simply an on/off switch controlled by electricity
- Integrated circuits combines dozens of hundreds of transistors in a chip

Advances of the IC technology affect H/W and S/W design philosophy

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	$2,400,000$
2013	Ultra large scale IC	$250,000,000,000$

Microelectronics Process

- Silicon ingot are 6-12 inches in diameter and about 12-24 inches long
- The manufacturing process of integrated circuits is critical to the cost of a chip
- Impurities in the wafer can lead to defective devices and reduces the yield

Moore's Law

Computer Generations

Computers were classified into 4 generations based on revolutions in the technology used in the development
\square By convention, electronic computers are considered as the first generation rather than the electromechanical machines that preceded them

Today computer generations are not commonly referred to due to the long standing of the VLSI technology and the lack of revolutionary technology in sight

Generations	Dates	Technology	Principal new product
1	$1950-1959$	Vacuum tube	Commercial electronic computer
2	$1960-1968$	Transistor	Cheaper computers
3	$1969-1977$	Integrated circuits	Minicomputer
4	$1978-?$	LSI and VLSI	Personal computers and workstations

Historical Perspective

Year	Name	Size (Ft. $^{\mathbf{3}}$ \mathbf{n}^{2}	Power (Watt)	Perform. (adds/sec)	Mem (KB $)$	Price	Price/ Perfor m. vs. UNIVAC	Adjuste d price 1996	Adjusted price/perfor m vs. UNIVAC
1951	UNIVAC 1	1000	124 K	1.9 K	48	$\$ 1 \mathrm{M}$	1	$\$ 5 \mathrm{M}$	1
1964	IBM S/360 model 50	60	10 K	500 K	64	$\$ 1 \mathrm{M}$	263	$\$ 4.1 \mathrm{M}$	318
1965	PDP-8	8	500	330 K	4	$\$ 16 \mathrm{~K}$	10,855	$\$ 66 \mathrm{~K}$	13,135
1976	Cray-1	58	60 K	166 M	32,768	$\$ 4 \mathrm{M}$	21,842	$\$ 8.5 \mathrm{M}$	15,604
1981	IBM PC	1	150	240 K	256	$\$ 3 \mathrm{~K}$	42,105	$\$ 4 \mathrm{~K}$	154,673
1991	HP 9000/ model 750	2	500	50 M	16,384	$\$ 7.4 \mathrm{~K}$	$3,556,188$	$\$ 8 \mathrm{~K}$	$16,122,356$
1996	Intel PPro PC 200 Mhz	2	500	400 M	16,384	$\$ 4.4 \mathrm{~K}$	$47,846,890$	$\$ 4.4 \mathrm{~K}$	$239,078,908$

After adjusting for inflation, price/performance has improved by about 240 million in 45 years (about 54\% per year)

Conclusion

So what's in it for you?

\rightarrow In-depth understanding of the inner-workings of modern computers, their evolution, and trade-offs present at the hardware/software boundary.
\rightarrow Experience with the design process in the context of a reasonable size hardware design

Why should a programmer care?

\rightarrow In the 60's and 70 's performance was constrained by the size of memory, not an issue today
\rightarrow Performance optimization needs knowledge of memory hierarchy, instruction pipeline, parallel processing, etc.
\rightarrow Systems' programming is highly coupled with the computer organization, e.g. embedded systems
Computer architecture is at the core of computer science \& eng.

