CMPE 411 Computer Architecture

Introduction and Overview

Web page

• Course information will primarily be made available on the department course tree:

cs.umbc.edu/courses/undergraduate/411/spring18/park/

Course Workload

Homeworks

- 4-5 homeworks will be assigned throughout the term, and will comprise 20% of your final grade
- The homeworks will each typically require about 2-3 hours to perform
- Homeworks are due in class on the due date (not later)

□ <u>Exams</u>

- A midterm exam will be given in the week before spring break, worth 20% of your final grade
- The final exam is scheduled for May 17th during UMBC specified hours
 - The final will be cumulative, but will be weighted towards the material since the midterm
 - It will be worth 30% of your final grade

Course Workload (cont)

□ <u>Project</u>

- A design project will be assigned in the second half of the course, worth 30% of your final grade
- The project involves architecture simulation and performance analysis
- The project must be finished and submitted on time to earn a grade

Grade structure and policy

	Grade distribution	Course grade	e Range
Final Exam	30%	А	>= 89.5%
Mid-term Exam	20%	В	>=79.5%, <89.5%
Project	30%	С	>=69.5%, <79.5%
Homework	20%	D	>=59.5% <69.5%

- Assignments are due in class (<u>Late assignments are not accepted</u>)
- UMBC rules apply to cheating/copying
 - You may discuss the homework and the project
 - You must do your own work and not copy from anyone else
- Copying/cheating will result in a minimum punishment of a zero grade for the assignment or project, or a full letter grade drop, whichever is greater

Introduction & Motivation

- Computer systems are responsible for almost 10% of the gross national product of the US
- Has the transportation industry kept pace with the computer industry, a trip from NY to London would take a second and cost a penny (used to be "coast to coast would take 5 seconds and cost 50 cents" in previous edition!)
- WWW, DNA mapping, smartphones are some applications that were economically infeasible but became practical
- Cashless society, anywhere computing, self-driving cars and intelligent highways, mobile health care... are the next computer sci-fi dreams on their way to become a reality
- Computer architecture has been at the <u>core</u> of such technological development and is still on a forward move

What is "Computer Architecture"?

- Instruction set architecture deals with the functional behavior of a computer system as viewed by a programmer (like the size of a data type – 32 bits to an integer).
- Computer organization deals with structural relationships that are not visible to the programmer (like clock frequency or the size of the physical memory).
- The Von Neumann model is the most famous computer organization

Instruction Set Architecture

... the attributes of a [computing] system as seen by the programmer, *i.e.* the conceptual structure and functional behavior, as distinct from the organization of the data flows and controls the logic design, and the physical implementation. – Amdahl, Blaaw, and Brooks, 1964

- -- Organization of Programmable Storage
- -- Data Types & Data Structures: Encoding & Representation
- -- Instruction Set
- -- Instruction Formats
- -- Modes of Addressing and Accessing Data Items and Instructions
- -- Exceptional Conditions

The instruction set architecture distinguishes the semantics of the architecture from its detailed hardware implementation

* Slide is courtesy of Dave Patterson

The Instruction Set: a Critical Interface

Examples:

- DEC Alpha (v1, v3) 1992-1997 • HP PA-RISC (v1.1, v2.0) 1986-1996 • Sun Sparc (v8, v9) 1987-1995
- (MIPS I, II, III, IV, V) SGI MIPS 1986-1996
- Intel (8086,80286,80386, 80486,Pentium, MMX, ...) 1978-2000

The instruction set can be viewed as an abstraction of the H/W that hides the details and the complexity of the H/W

MIPS R3000 Instr. Set Arch. (Summary)

Instruction Categories

- Load/Store
- Computational
- Jump and Branch
- Floating Point
 - coprocessor
- Memory Management
- Special

3 Instruction Formats: all 32 bits wide

* Slide is courtesy of Dave Patterson

Registers

R0 - R31

PC

НΙ

LO

Machine Organization

- Capabilities & performance characteristics of principal functional units (e.g., Registers, ALU, Shifters, Logic Units, ...)
- Ways in which these components are interconnected
- Information flows between components
- Logic and means by which such information flow is controlled
- Choreography of functional units to realize the instruction set architecture
- Register Transfer Level Description

courtesy

Ichomed Vounia

ISA Level

Functional Units & Interconnect

Example Organization

• TI SuperSPARCtm TMS390Z50 in Sun SPARCstation20

* Slide is courtesy of Dave Patterson

courtesy

Mahamad Vaunia

Levels of Behavior Representation

Control Signal Specification

> 0 0

ALUOP[0:3] <= InstReg[9:11] & MASK

courtesy

CMSC 411, Computer Architecture

* Slide is courtesy of Dave Patterson

Levels of Abstraction

S/W and H/W consists of hierarchical layers of abstraction, each hides details of lower layers from the above layer

The instruction set arch. abstracts the H/W and S/W interface and allows many implementation of varying cost and performance to run the same S/W

* Figure is courtesy of Dave Patterson

General Computer Organization

- Every piece of every computer, past and present, can be placed into input, output, memory, datapath and control
- The design approach is constrained by the cost and size and capabilities required from every component
- An example design target can be 25% of the cost for Processor, 25% of the cost for minimum memory size, leaving the remaining budget for I/O devices, power supplies, and chassis

PC Motherboard: A Close Look

CMSC 411, Computer Architecture

* Slide is (partially) courtesy of Mary Jane Irwin

Inside the Pentium 4 Processor Chip

Co	ntrol		Control	I/O interface
In	struction	cache		
Enha floati and r		nced	Data cache	
		ng point nultimedia	Integer datapath	Secondary
		and memory interface		
Advanced pipelining hyperthreading support			Control	

Forces on Computer Architecture

- Programming languages might encourage architecture features to improve performance and code size, e.g. Fortran and Java
- Operating systems rely on the hardware to support essential features such as semaphores and memory management
- Technology always raises the bar for what could be done and changes design's focus
- Applications usually derive capabilities and constrains, e.g. embedded computing
- History always provides the starting point and filter out mistakes

Technology => dramatic change

Processor

- → logic capacity: about 30% increase per year
- ➔ clock rate: about 20% increase per year

Higher logic density gave room for instruction pipeline & cache

□ <u>Memory</u>

- → DRAM capacity: about 60% increase per year (4x every 3 years)
- → Memory speed: about 10% increase per year
- → Cost per bit: about 25% improvement per year

Performance optimization no longer implies smaller programs

J <u>Disk</u> → Capacity: about 60% increase per year

Computers became lighter and more power efficient

Technology Impact on Processors

- In ~1985 the single-chip processor and the single-board computer emerged
- In the 2004+ timeframe, multi-core processors with increased parallelism

* Figure is courtesy of Dave Patterson

Processor Performance Increase (SPEC)

courtesy

CMSC 411, Computer Architecture

Computers in the Market

- Desktop computers
 - General purpose, variety of software
 - Subject to performance and cost tradeoff
- <u>Server computers</u>
 - Network based
 - High capacity, performance, reliability
 - Range from low-end to very powerful machines
- Embedded computers
 - Hidden as components of systems
 - Stringent power, cost, and performance constraints
 - Cell phones, TV, cars, etc.

Slide is courtesy of Morgan Kaufmann Publishers

Where is the Market going?

Cs 🔲 TVs

Any where computing and computers every where are not that far away?

* Slide is (partially) courtesy of Mary Jane Irwin

Where is the Market going?

- Tablets and smart phones reflect the PostPC era, versus personal computers and traditional cell phones.
- □ Tablets have fastest growth, nearly doubling between 2011 and 2012.

Technology Impact on DRAM

- DRAM capacity has been consistently quadrupled every 3 years, a 60% increase per year, resulting over 16,000 times in 20 years (recently slowed down doubling every 2 years or 4 times every 4 years)
- Processor organization is becoming a main focus of performance optimization
- Technology advances got H/W designer to focus not only on performance but also on functional integration and power consumption (e.g. system on a chip)
- Programming is more concerned with cache and no longer constrained by the RAM size 10,000,000

a maa di Varua i

CMSC 411, Computer Architecture

Integrated Circuits: Fueling Innovation

- The manufacture of a chip begins with silicon, a substance found in sand
- Silicon does not conduct electricity well and thus called semiconductor
- A special chemical process can transform tiny areas of silicon to either:
 - 1. Excellent conductors of electricity (like copper)
 - 2. Excellent insulator from electricity (like glass)
 - 3. Areas that can conduct or insulate under a special condition (a switch)
- A transistor is simply an on/off switch controlled by electricity
- Integrated circuits combines dozens of hundreds of transistors in a chip

Advances of the IC technology affect H/W and S/W design philosophy

Year	Technology	Relative performance/cost		
1951	Vacuum tube	1		
1965	Transistor	35		
1975	Integrated circuit (IC)	900		
1995	Very large scale IC (VLSI)	2,400,000		
2013	Ultra large scale IC	250,000,000,000		

Microelectronics Process

- Silicon ingot are 6-12 inches in diameter and about 12-24 inches long
- The manufacturing process of integrated circuits is critical to the cost of a chip
- Impurities in the wafer can lead to defective devices and reduces the yield

Moore's Law

Transistor count

Mahamad Vaunia

Computer Generations

- Computers were classified into 4 generations based on revolutions in the technology used in the development
- By convention, electronic computers are considered as the first generation rather than the electromechanical machines that preceded them
- Today computer generations are not commonly referred to due to the long standing of the VLSI technology and the lack of revolutionary technology in sight

Generations	Dates	Technology	Principal new product	
1	1950-1959	Vacuum tube	Commercial electronic computer	
2	1960-1968	Transistor	Cheaper computers	
3	1969-1977	Integrated circuits	Minicomputer	
4	1978- ?	LSI and VLSI	Personal computers and workstations	

Historical Perspective

Year	Name	Size (Ft. ³)	Power (Watt)	Perform. (adds/sec)	Mem (KB)	Price	Price/ Perfor m. vs. UNIVAC	Adjuste d price 1996	Adjusted price/perfor m vs. UNIVAC
1951	UNIVAC 1	1000	124K	1.9K	48	\$1M	1	\$5M	1
1964	IBM S/360	60	10K	500K	64	\$1M	263	\$4.1M	318
	model 50								
1965	PDP-8	8	500	330K	4	\$16K	10,855	\$66K	13,135
1976	Cray-1	58	60K	166M	32,768	\$4M	21,842	\$8.5M	15,604
1981	IBM PC	1	150	240K	256	\$3K	42,105	\$4K	154,673
1991	HP 9000/	2	500	50M	16,384	\$7.4K	3,556,188	\$8K	16,122,356
	model 750								
1996	Intel PPro	2	500	400M	16,384	\$4.4K	47,846,890	\$4.4K	239,078,908
	PC 200 Mhz								

After adjusting for inflation, price/performance has improved by about 240 million in 45 years (about 54% per year)

Conclusion

So what's in it for you?

- ➔ In-depth understanding of the inner-workings of modern computers, their evolution, and trade-offs present at the hardware/software boundary.
- ➔ Experience with the design process in the context of a reasonable size hardware design

Uhy should a programmer care?

- ➔ In the 60's and 70's performance was constrained by the size of memory, not an issue today
- ➔ Performance optimization needs knowledge of memory hierarchy, instruction pipeline, parallel processing, etc.
- Systems' programming is highly coupled with the computer organization, e.g. embedded systems

Computer architecture is at the core of computer science & eng.

