CMSC 345

Software Design and Development

 Fall 2003

Code Inspection Report Template

General Instructions

1. Provide a cover page that includes the document name, product name, customer name, team name, team member names, and the current date.

2. Number the pages of the document.

3. Number and label all figures. Refer to the figures by number in the text.

4. All sections should have an introductory sentence or two.

5. Do not use vague words and phrases such as may, might, could, possibly, should, assumed to be, some, a little, and a lot. Use strong, definite words and phrases such as shall, will, will not, can, and cannot.

6. Watch your spelling, punctuation, and grammar. It is a reflection on your professionalism.

Be sure that your document is

· Complete - No information is missing
· Clear - Every sentence's meaning must be clear to all parties

· Consistent – The writing style and notation is consistent throughout the document and the document does not contradict itself

· Verifiable - All facts stated are verifiable

Remember that you are required to do a peer review of this document.

Purpose of This Assignment

· To achieve group consensus on developing or adopting practical coding and commenting conventions.

· To learn how to perform code inspections among "egoless" team members.

· To appreciate how error correction costs can be significantly reduced by discovery during the coding phase rather than later during testing or after installation.

Required Activities

· Define project-specific commenting and coding conventions (or adopt/modify other popular conventions).

· Compile and build all code without fatal errors and with only minimal warnings.

· Inspect together, as a team, all significant pieces of code written to date. (Code inspection meetings may be virtual rather than physical, although this may be more difficult.) You will need to take copious notes during inspection meetings in order to fulfill the content requirements of the Code Inspection Report. Understand what information you will need to record before each meeting.

Product Name

Code Inspection Report

Table of Contents

 Page
1. Introduction

1.1 Purpose of This Document

1.2 References

1.3 Coding Conventions

1.4 Defect Checklist

2. Code Inspection Process

2.1 Description

2.2 Impressions of the Process

2.3 Inspection Meetings

3. Modules Inspected

4. Defects

Appendix A. Coding Conventions

1. Introduction
1.1 Purpose of This Document

State the purpose of this document and specify the intended readership.

1.2 References

Provide a list of all applicable and referenced documents and other media used during code inspection or in the preparation of this document. Minimally, references to the SRS, UI Design Document, and the SDD go here. For each reference, provide the title, author(s), publisher (if applicable), date, and URL (for websites).

1.3 Coding Conventions

Summarize your commenting and coding conventions.

· Explain the rationale underlying their development (if original to your team) and/or adoption (if adopted from elsewhere).

· Elaborate the conventions fully in Appendix A with guiding examples. If you adopted any conventions, they should also be listed in the appendix with the source cited (give the URL, if applicable). If you adopted any conventions, but adjusted them, explain the adjustments.

1.4 Defect Checklist

Give a comprehensive tabular checklist of possible defects that you used during the inspection process. Create categories for the defects such as Coding Conventions, Logic Errors, Security Oversights, and Commenting. Remember to take into consideration defects that are programming language-specific.

2. Code Inspection Process

2.1 Description

Briefly describe the code inspection process your team followed. Give the process really followed, not the "ideal" process. If your process was relatively far from the ideal, explain why you chose to so diverge as well as how.

· Credit will not be taken off for following a non-standard process if that process seems likely to have led to your reported results.

· Credit will be taken off for describing a process that does not seem to match your reported results.

 2.2 Impressions of the Process

Summarize your general impressions of the code inspection process (i.e., was it effective, why/why not). Also summarize the quality of your program both prior to the code inspection and after any repairs actually made.

· Indicate which are the "best" one or two modular units in your program (in terms of relatively small likelihood of remaining flaws) and why you think so.

· Indicate which are the "worst" one or two modular units in your program (in terms of relatively large likelihood of remaining flaws) and why you think so.

2.3 Inspection Meetings

Give references for all code inspection meetings, whether physical or virtual. For each meeting, specify the date, location (virtual as well as physical), time started, time ended, who attended, who performed which roles, and which particular files or other code units were covered in the meeting.

3. Modules Inspected

Note: Minor utility modules may be omitted, but make sure to list any that were. Present the following for every source code module that was inspected.

· Briefly describe where this module fits into the design and architecture. Normally, it should implement a modular unit that comprises all or part of a design component or object (from the SDD). (If the module is a grouping of functions, give their names.)

· If it did not appear in the SDD, explain why it was added (and revise the SDD).

· Discuss the quality and quantity of comments and adherence to coding conventions (or lack thereof).

· If there are any differences between the modular unit's design (from the SDD) and the actual code, then

· Compare the planned module interface to the actual interface implemented.

· Compare the planned data structures to the actual data structures implemented.

· Compare the planned user and file I/O to the actual I/O implemented.

· Compare the planned algorithm(s) to the actual algorithm(s) implemented.

· Consider, with respect to all of the above, tradeoffs (e.g., worst case time vs. space, ease of implementation and testing, and opportunities for design/code reuse).

4. Defects

Reports indicating zero or very few defects are unlikely to be believable. Think of this as a "treasure hunt" and find as many defects as possible. But please do not insert defects intentionally.

Present the following for each defect found, including coding convention-noncompliance. A tabular format is strongly suggested.

· Name of the module in which the defect was found

· Description of the defect, making clear in what way it is deficient. Categorize it as one of the following defect areas:

· Correctness with respect to the functional specification (does it look like it does what is required?)

· Completeness with respect to that specification (does it completely fulfill the requirement or only partially?)

· User friendliness (consider the handling of user input errors as well as prompts and all other information displayed to the user)

· Other (e.g., minimizing inter-module coupling, maximizing intra-module cohesion)

· Indicate whether or not the defect has been fixed.

· If it was fixed, briefly describe the debugging process, if any, outside of the code inspection itself.

· If it is not yet fixed, but you intend to fix it later (that is, before system delivery) indicate so.

· If you do not plan to fix it prior to system delivery, briefly explain why it is deemed too difficult or not sufficiently beneficial to repair.

Appendix A. Coding Conventions

A comprehensive list of the commenting and coding conventions discussed in Section 1.3. Supplement each convention with examples. Cite all sources.

PAGE
6

