
Project #5: Hubble Simulator

CMSC 341 - Spring 2014

Due date: May 13th

1 Introduction

Satellite telescopes gather a huge amount of data. Often satellites store their data in solid
state memory and transfer it to Earth in batches. To prevent missing information, while
satellites transfer data, the telescope continues to collect information. Once the information
is received, the data is process, sorted, and analyzed.

In this project students will be implementing a Hubble simulator that will (1) collect
data, (2) transfer the data in batches, (3) sort and process the data stored in shared buffers,
and (4) display the information for further analysis and verification.

1



2 Objectives

The purpose of this project is to introduce the basic concepts of multi-threads, shared mem-
ory, synchronized methods, thread-safe operations, Java Fork/Join, and visual illustrations
of data.

3 Primary Requirements

Four concurrent threads will be in charge of collecting, storing, receiving, and processing
the data.

1. Data collection: the satellite thread will be generating and adding elements into
a shared, thread-safe buffer B1. In this particular project, the satellite thread will
produce random integers between 0 − 4096. If there’s no space on the shared buffer
B1, the satellite thread should wait.

2. Shared Buffer: the buffer thread creates and manages a thread-safe array B1 of
size N2 ∗ 2, where N is a variable provided to each class. For this particular project
N = 2i for 8 <= i <= 11, thus there will be only four possible values for N ∈ {28 =
256, 29 = 512, 210 = 1024, 211 = 2048}.

3. Receiver: the receiver thread will try to obtain data from the satellite through the
shared buffer B1. However, the thread will have to wait until there are at least
N2 elements in the shared buffer. The buffer B1 will notify the receiver when enough
data becomes available and the receiver thread will then move the data into a different
shared buffer B2 of size N2. Once the data is transferred, the information should be
removed from the satellite’s buffer B1.

4. Processing: the processing thread will (a) sort the elements, (b) normalize the data,
and (c) save the information into an image.

(a) The processing thread will first sort the array using a Fork/Join implementation
of Mergesort. The Mergesort algorithm will receive a parameter T that defines
the threshold for sorting the data. If the number of elements in a particular
process are less than T , insertion sort should be used to sort the elements,
otherwise the data will be split and a ForkingAction or RecursiveAction will be
called. The Mergesort implementation doesn’t have to be a generic class, instead
it can be a similar implementation to the one discussed in class (see slides on
Blackboard, slide #39, file called Parallel Programing - 2 - Caban). The time
tsec that it takes to sort the elements should be computed. For this particular
project, T = 10j where j ∈ {1, 2, 3, 4, 5}.

(b) Once the elements in buffer B2 have been sorted, the elements should be normal-
ized between -128 and 127 and transferred into a byte array. A very useful tip to

2



know in programming languages is how to rescale an array with values between
[min,mix] to another with values between [a, b]. There are multiple ways to do
that, one of the most popular techniques is to used the following formula:

f(x) =
(b− a)(x−min)

max−min
+ a (1)

(c) Once the byte array has been created, the data should be saved as a grayscale
image. See documentation for the following classes:

BufferedImage

ImageIO

ByteArrayInputStream

You don’t have to use any of these classes. There are many ways to do this, just
pick one that works for you.

(d) Note: B1 should only be created once for every possible N . You should only
remove N2 elements from B1, process the data, and save the resulting image.
Then remove another N2 elements from B1, process the data with a larger T
and save the image. Repeat this for any possible T .

4 Other requirements and hints

1. Producer / Consumer: For the satellite, buffer, and receiver threads, students
should thinking about the producer / consumer examples discussed in class (see
“Threads - Coded Examples” on Blackboard). Specifically study the 3.Polling, 4.Wait,
and 5.WaitAgain programs that are under the same zip file in blackboard or here
(http://userpages.umbc.edu/ slupoli/notes/DataStructures/code/threads/).

2. Number of runs: the program will be executed 20 times. That is, four different N
values (8 <= i <= 11) times five different thresholds T (1 <= j <= 5). The driver
(i.e. main function) should have a loop to execute the program 20 times. Since we
are using threads, make sure that all threads are completed before executing the next
iteration of the loop.

3. The ant project should create an images folder where the images will be stored.

4. You must use Java 7. The Fork-Join framework is new to Java 7.

5. For additional information about Fork-Join and pseudocode for Merge Sort, please see
slides 34 − 39 in Blackboard. (Click on file called Parallel Programing - 2 - Caban).
The easiest way to implement this is following the pseudocode shown in slide 39.

6. Number of cores: To get the number of processors (cores) and amount of free mem-
ory students should read more about Runtime.getRuntime().availableProcessors() and
Runtime.getRuntime().freeMemory()

3



7. Output:

Available processors (cores): 8

Available memory (bytes): 123081744

Run #1: i=8,j=1,N=256,B1=131072,B2=65536,T=10

Time mergesort: 108ms

Saving image: images/output_N256_T10.jpg

Run #2: i=8,j=2,N=256,B1=131072,B2=65536,T=100

Time mergesort: 54ms

Saving image: images/output_N256_T100.jpg

Run #3: i=8,j=3,N=256,B1=131072,B2=65536,T=1000

Time mergesort: 61ms

Saving image: images/output_N256_T1000.jpg

Run #4: i=8,j=4,N=256,B1=131072,B2=65536,T=10000

Time mergesort: 41ms

Saving image: images/output_N256_T10000.jpg

Run #5: i=8,j=5,N=256,B1=131072,B2=65536,T=100000

Time mergesort: 45ms

Saving image: images/output_N256_T100000.jpg

Run #6: i=9,j=1,N=512,B1=524288,B2=262144,T=10

Time mergesort: 98ms

Saving image: images/output_N512_T10.jpg

Run #7: i=9,j=2,N=512,B1=524288,B2=262144,T=100

Time mergesort: 73ms

Saving image: images/output_N512_T100.jpg

Run #8: i=9,j=3,N=512,B1=524288,B2=262144,T=1000

Time mergesort: 84ms

Saving image: images/output_N512_T1000.jpg

Run #9: i=9,j=4,N=512,B1=524288,B2=262144,T=10000

Time mergesort: 113ms

Saving image: images/output_N512_T10000.jpg

Run #10: i=9,j=5,N=512,B1=524288,B2=262144,T=100000

Time mergesort: 68ms

4



Saving image: images/output_N512_T100000.jpg

Run #11: i=10,j=1,N=1024,B1=2097152,B2=1048576,T=10

Time mergesort: 421ms

Saving image: images/output_N1024_T10.jpg

Run #12: i=10,j=2,N=1024,B1=2097152,B2=1048576,T=100

Time mergesort: 1217ms

Saving image: images/output_N1024_T100.jpg

Run #13: i=10,j=3,N=1024,B1=2097152,B2=1048576,T=1000

Time mergesort: 386ms

Saving image: images/output_N1024_T1000.jpg

Run #14: i=10,j=4,N=1024,B1=2097152,B2=1048576,T=10000

Time mergesort: 364ms

Saving image: images/output_N1024_T10000.jpg

Run #15: i=10,j=5,N=1024,B1=2097152,B2=1048576,T=100000

Time mergesort: 403ms

Saving image: images/output_N1024_T100000.jpg

Run #16: i=11,j=1,N=2048,B1=8388608,B2=4194304,T=10

Time mergesort: 5201ms

Saving image: images/output_N2048_T10.jpg

Run #17: i=11,j=2,N=2048,B1=8388608,B2=4194304,T=100

Time mergesort: 1739ms

Saving image: images/output_N2048_T100.jpg

Run #18: i=11,j=3,N=2048,B1=8388608,B2=4194304,T=1000

Time mergesort: 1701ms

Saving image: images/output_N2048_T1000.jpg

Run #19: i=11,j=4,N=2048,B1=8388608,B2=4194304,T=10000

Time mergesort: 1549ms

Saving image: images/output_N2048_T10000.jpg

Run #20: i=11,j=5,N=2048,B1=8388608,B2=4194304,T=100000

Time mergesort: 1595ms

Saving image: images/output_N2048_T100000.jpg

5



8. The implementation for satellite, buffer, receiver, and mergesort should be stored in
individual files. See producer / consumer examples discussed in class.

9. Please take a look at the code posted on Blackboard. Specifically study the 3.Polling,
4.Wait, and 5.WaitAgain programs that are under the same zip file in blackboard
or here (http://userpages.umbc.edu/ slupoli/notes/DataStructures/code/threads/).
Your main function should follow this general concept. Note, this is ONLY pseu-
docode, you might need to change names, parameters, etc...

for N in {256,512,1024,2048}:

B1 = Buffer(N); //The actual size of buffer will be 2*N^2

P = Producer(B1, N); //Thread that will add data to B1

for T in {10,100,1000,10000,100000}:

//Thread that will consume data from B1 (only N^2 elements)

B2 = Consume(B1,N);

//Sort using Merge Sort

t1 = GetTime();

Merge(B2, T);

t2 = GetTime();

//Process data

BArray = Normalize(B2);

Save_Byte_to_Image(BArray);

Print_info(t2-t1);

5 What to submit

1. Source code in a package named project5.

2. 9 line plots illustrating the running time for mergesort. (1) Note, you don’t have to do
any implementation for this step. Instead run your program, copy/paste the results
into your favorite plotting software application, and generate the plots. You can use
MS Excel, MatplotLib, or any other preferred software. (2) The images should be
included in a directory outside the package project5 called results. (3) The images
should either be .PNG, .JPG, or .TIF formats.

(a) For a each N ∈ {28 = 256, 29 = 512, 210 = 1024, 211 = 2048}, create a line plot
illustrating the time taken to sort the elements using the five different thresholds
T . This will result in four plots. Please make sure to have a title and labels in
your plots.

6



(a)

(b)

Figure 1: (a) Line plot illustrating the time taken to sort the elements using the five
different thresholds T with 10242 elements. (b) Line plot illustrating the time taken to sort
the elements using a treshold T = 10 for four different N values.

running_time_analysis_N256.jpg

running_time_analysis_N512.jpg

running_time_analysis_N1024.jpg

running_time_analysis_N2048.jpg

(b) For each T ∈ {101, . . . , 105}, create a line plot illustrating the time taken to sort
the elements using different N . This will result in five plots. Please make sure
to include a title and labels in your plots.

running_time_analysis_T10.jpg

running_time_analysis_T100.jpg

running_time_analysis_T1000.jpg

running_time_analysis_T10000.jpg

running_time_analysis_T100000.jpg

3. For your submission, the images folder should not have any images. That direc-
tory will be created by ant when we compile your code and the images (e.g. im-
ages/output N256 T10.jpg) will be generated when we run your program. The only
images that you will submit are those inside the results folder showing the running
time analysis of your application.

7


