CMSC 341 Data Structure Asymptotic Analysis Review

These questions will help test your understanding of the asymptotic analysis material discussed in class and in the text. These questions are only a study guide. Questions found here may be on your exam, although perhaps in a different format. Questions NOT found here may also be on your exam.

- 1. What is the purpose of asymptotic analysis?
- 2. Define "Big-Oh" using a formal, mathematical definition.
- 3. Let $T_1(x) = O(f(x))$ and $T_2(x) = O(g(x))$. Prove $T_1(x) + T_2(x) = O(\max(f(x), g(x)))$.
- 4. Let T(x) = O(cf(x)), where *c* is some positive constant. Prove T(x) = O(f(x)).
- 5. Let $T_1(x) = O(f(x))$ and $T_2(x) = O(g(x))$. Prove $T_1(x) * T_2(x) = O(f(x) * g(x))$
- 6. Prove $2^{n+1} = O(2^n)$.
- 7. Prove that if T(n) is a polynomial of degree *x*, then $T(n) = O(n^x)$.
- 8. Number these functions in ascending (slowest growing to fastest growing) Big-Oh order:

Number	Big-Oh
	$O(n^3)$
	$O(n^2 \lg n)$
	<i>O</i> (1)
	$O(\lg^{0.1} n)$
	$O(n^{1.01})$
	$O(n^{2.01})$
	$O(2^n)$
	$O(\lg n)$
	O(n)
	$O(n \lg n)$
	$O(n \lg^5 n)$

- 9. Determine, for the typical algorithms that you use to perform calculations by hand, the running time to:
 - a. Add two N-digit numbers
 - b. Multiply two N-digit numbers
- 10. What is the asymptotic performance of each of the following? Select among:
 - a. O(n)b. $O(n^2)$ c. $O(n \lg n)$ d. $O(n^3)$ e. $O(\lg n)$ f. O(1)g. O(n!)h. None of these
 - (a) _____ Squaring each element of an NxN matrix
 - (b) _____ Finding the smallest value in a sorted array of N integers
 - (c) _____ Finding a value in a sorted array using binary search
 - (d) _____ Pushing N elements onto a stack, then popping them and printing them
 - (e) _____ Finding the largest 3 values in an unsorted array
- 11. What is the asymptotic performance of the following Java code fragment? Justify your answer.

```
for (int i = 0; i < N; i++)
{
    for (int j = 10; j >= 0; j--)
    {
        int count = 1;
        while (count < N)
            count *= 2;
    }
}</pre>
```