CMSC 341 Data Structure
 Asymptotic Analysis Review

These questions will help test your understanding of the asymptotic analysis material discussed in class and in the text. These questions are only a study guide. Questions found here may be on your exam, although perhaps in a different format. Questions NOT found here may also be on your exam.

1. What is the purpose of asymptotic analysis?
2. Define "Big-Oh" using a formal, mathematical definition.
3. Let $T_{1}(x)=O(f(x))$ and $T_{2}(x)=O(g(x))$. Prove $T_{1}(x)+T_{2}(x)=O(\max (f(x), g(x)))$.
4. Let $T(x)=O(c f(x))$, where c is some positive constant. Prove $T(x)=O(f(x))$.
5. Let $T_{1}(x)=O(f(x))$ and $T_{2}(x)=O(g(x))$. Prove $T_{1}(x) * T_{2}(x)=O(f(x) * g(x))$
6. Prove $2^{\mathrm{n}+1}=O\left(2^{\mathrm{n}}\right)$.
7. Prove that if $T(n)$ is a polynomial of degree x, then $T(n)=O\left(n^{x}\right)$.
8. Number these functions in ascending (slowest growing to fastest growing) Big-Oh order:

Number	Big-Oh
	$O\left(n^{3}\right)$
	$O\left(n^{2} \lg n\right)$
	$O(1)$
	$O\left(\lg ^{0.1} n\right)$
	$O\left(n^{1.01}\right)$
	$O\left(n^{2.01}\right)$
	$O\left(2^{n}\right)$
	$O(\lg n)$
	$O(n)$
	$O(n \lg n)$
	$O\left(n \lg ^{5} n\right)$

9. Determine, for the typical algorithms that you use to perform calculations by hand, the running time to:
a. Add two N-digit numbers
b. Multiply two N-digit numbers
10. What is the asymptotic performance of each of the following? Select among:
a. $O(n)$
b. $O\left(n^{2}\right)$
c. $O(n \lg n)$
d. $O\left(n^{3}\right)$
e. $O(\lg n)$
f. $O(1)$
g. $O(n!)$
h. None of these
(a) \qquad Squaring each element of an NxN matrix
(b) \qquad Finding the smallest value in a sorted array of N integers
(c) \qquad Finding a value in a sorted array using binary search
(d) \qquad Pushing N elements onto a stack, then popping them and printing them
(e) \qquad Finding the largest 3 values in an unsorted array
11. What is the asymptotic performance of the following Java code fragment? Justify your answer.
```
for (int i = 0; i < N; i++)
{
    for (int j = 10; j >= 0; j--)
    {
        int count = 1;
        while (count < N)
            count *= 2;
    }
}
```

