
CMSC 341

Skip Lists

8/3/2007 UMBC CMSC 341 SkipList 2

Looking Back at Sorted Lists

� Sorted Linked List
What is the worst case performance of find(),

insert()?

� Sorted Array

What is the worst case performance of find(),

insert()?

8/3/2007 UMBC CMSC 341 SkipList 3

An Alternative Sorted Linked List

� What if you skip every other node?

� Every other node has a pointer to the next and the
one after that

� Find :

� follow “skip” pointer until target < this.skip.element

� Resources

� Additional storage

� Performance of find()?

8/3/2007 UMBC CMSC 341 SkipList 4

Skipping Every 2nd Node

The value stored in each node is shown below the node
and corresponds to the the position of the node in the list.

It’s clear that find() does not need to examine every node.
It can skip over every other node, then do a final

examination at the end. The number of nodes examined is

no more than n/2 + 1.

For example the nodes examined finding the value 15
would be

2, 4, 6, 8, 10, 12, 14, 16, 15 -- a total of 16/2 + 1 = 9.

8/3/2007 UMBC CMSC 341 SkipList 5

Skipping Every 2nd and 4th Node

The find operation can now make bigger skips than the
previous example. Every 4th node is skipped until the

search is confined between two nodes of size 3. At this

point as many as three nodes may need to be scanned.
It’s also possible that some nodes may be examined more

than once. The number of nodes examined is no more

than n / 4 + 3.

Again, look at the nodes examined when searching for 15.

8/3/2007 UMBC CMSC 341 SkipList 6

New and Improved Alternative

� Add hierarchy of skip pointers
� every 2i-th node points 2i nodes ahead

� For example, every 2nd node has a reference 2 nodes

ahead; every 8th node has a reference 8 nodes ahead

8/3/2007 UMBC CMSC 341 SkipList 7

Skipping Every 2i-th node

Suppose this list contained 32 nodes and we want to
search for some value in it. Working down from the top,

we first look at node 16 and have cut the search in half.

When we look again one level down in either the right or
left half, we have cut the search in half again. We continue

in this manner until we find the node being sought (or not).

This is just like binary search in an array. Intuitively we

can understand why the max number of nodes examined
is O(lg N).

8/3/2007 UMBC CMSC 341 SkipList 8

Some Serious Problems

� This structure looks pretty good, but what happens
when we insert or remove a value from the list?

Reorganizing the the list is O(N).

� For example, suppose the first element of the list was

removed. Since it’s necessary to maintain the strict

pattern of node sizes, it’s easiest to move all the
values toward the head and remove the end node. A

similar situation occurs when a new node is added.

8/3/2007 UMBC CMSC 341 SkipList 9

Skip Lists
� Concept:

A skip list maintains the same distribution of nodes, but

without the requirement for the rigid pattern of node sizes

� 1/2 have 1 pointer

� 1/4 have 2 pointers

� 1/8 have 3 pointers

� …

� 1/2i have i pointers

� It’s no longer necessary to maintain the rigid pattern by

moving values around for insert and remove. This gives
us a high probability of still having O(lg N) performance.

The probability that a skip list will behave badly is very
small.

8/3/2007 UMBC CMSC 341 SkipList 10

A Probabilistic Skip List

The number of forward reference pointers a node has
is its “size”.

The distribution of node sizes is exactly the same as
the previous figure, the nodes just occur in a different

pattern.

8/3/2007 UMBC CMSC 341 SkipList 11

Inserting a Node

� When inserting a new node, we choose the

size of the node probabilistically.

� Every skip list has an associated (and fixed)

probability, p, that determines the distribution

of node sizes. A fraction, p, of the nodes that

have at least r forward references also have r

+ 1 forward references.

8/3/2007 UMBC CMSC 341 SkipList 12

Skip List Insert

� To insert node:

� Create new node with random size.

� For each pointer, i , connect to next node with at

least i pointers.

int generateNodeSize(double p, int maxSize)

{

int size = 1;

while (drand48() < p) size++;

return (size >maxSize) ? maxSize : size;

}

8/3/2007 UMBC CMSC 341 SkipList 13

An Aside on Node Distribution

� Given an infinitely long skip list with associated probability p, it

can be shown that 1 – p nodes will have just one forward

reference.

� This means that p(1 – p) nodes will have exactly two forward

references and in general pk(1 – p) nodes will have k + 1 forward

reference pointers.

� For example, with p = 0.5

0.5 (1/2 of the nodes will have exactly one forward reference)

0.5 (1 – 0.5) = 0.25 (1/4 of the nodes will have 2 references)

0.52 (1 – 0.5) = 0.125 (1/8 of the nodes will have 3 references)

0.53 (1 – 0.5) = 0.0625 (1/16 of the nodes will have 4 references)

� Work out the distribution for p = 0.25 (1/4) for yourself.

8/3/2007 UMBC CMSC 341 SkipList 14

Determining the Size of the Header Node

� The size of the header node (the number of

forward references it has) is the maximum size of

any node in the skip list and is chosen when the

empty skip list is constructed (i.e. it must be

predetermined)

� Dr. Pugh has shown that the maximum size

should be chosen as log 1/p N. For p = ½, the

maximum size for a skip list with 65,536 elements

should be no smaller than log 2 65536 = 16.

8/3/2007 UMBC CMSC 341 SkipList 15

Performance Considerations

� The expected time to find an element (and therefore
to insert or remove) is O(lg N). It is possible for the
time to be substantially longer if the configuration of

nodes is unfavorable for a particular operation. Since
the node sizes are chosen randomly, it is possible to

get a “bad” run of sizes. For example, it is possible
that each node will be generated with the same size,

producing the equivalent of an ordinary linked list. A
“bad” run of sizes will be less important in a long skip
list than in a short one. The probability of poor

performance decreases rapidly as the number of
nodes increases.

8/3/2007 UMBC CMSC 341 SkipList 16

More performance
� The probability that an operation takes longer than expected

is function of the associated probability p. Dr. Pugh

calculated that with p = 0.5 and 4096 elements, the probability
that the actual time will exceed the expected time by more

than a factor of 3 is less than one in 200 million.

� The relative time and space performance depends on p. Dr.

Pugh suggests p = 0.25 for most cases. If the predictability of

performance is important, then he suggests using p = 0.5 (the

variability of the performance decreases with larger p).

� Interestingly, the average number of references per node is

only 1.33 when p = 0.25 is used. A BST has 2 references per
node, so a skip list is more space-efficient.

8/3/2007 UMBC CMSC 341 SkipList 17

Skip List Implementation

public class

SkipList <Anytype extends Comparable<? super AnyType>>{

private static class SkipListNode <AnyType>{

void setDatum(AnyType datum){ }

void setForward(int i, SkipListNode f){ }

void setSize(int size){ }

SkipListNode(){ }

SkipListNode(AnyType datum, int size){ }

SkipListNode(SkipListNode c){ }

AnyType getDatum(){ }

int getSize(){ }

SkipListNode getForward(int level){ }

private int m_size;

private Vector <SkipListNode> m_forward;

private Vector <AnyType> m_datum;

}

8/3/2007 UMBC CMSC 341 SkipList 18

Skip List Implementation (cont.)

SkipList(){}

SkipList(int max_node_size, double probab){}

SkipList(SkipList<AnyType> ref) {}

int getHighNodeSize(){}

int getMaxNodeSize(){}

double getProbability(){}

void insert(AnyType item){}

boolean find(AnyType item){}

void remove(AnyType item){}

private SkipListNode find(AnyType item, SkipListNode <AnyType>
start){}

private SkipListNode getHeader(){}

private SkipListNode findInsertPoint(AnyType item, int nodesize){}

private boolean insert(AnyType item, int nodesize){}

private int m_high_node_size;

private int m_max_node_size;

private double m_prob;

SkipListNode<AnyType> m_head;

}

8/3/2007 UMBC CMSC 341 SkipList 19

find

boolean find(Comparable x)

{

node = header node

for(reference level of node from (nodesize-1) down to 0)

while (the node referred to is less than x)

node = node referred to

if (node referred to has value x)

return true

else

return false

}

8/3/2007 UMBC CMSC 341 SkipList 20

findInsertPoint

� Ordinary list insertion:

Have handle (iterator) to node to insert in front of

� Skip list insertion:

Need handle to all nodes that skip to node of

given size at insertion point (all “see-able”

nodes).

� Use backLook structure with a pointer for each

level of node to be inserted

8/3/2007 UMBC CMSC 341 SkipList 21

Insert 6.5

8/3/2007 UMBC CMSC 341 SkipList 22

In the figure, the insertion point is between nodes 6 and 7. “Looking” back
towards the header, the nodes you can “see” at the various levels are

level node seen
0 6
1 6
2 4
3 header

We construct a “backLook” node that has its forward pointers set to the
relevant “see-able” nodes. This is the type of node returned by the
findInsertPoint method

8/3/2007 UMBC CMSC 341 SkipList 23

insert Method

� Once we have the backLook node returned by
findInsertPoint and have constructed the new node to be

inserted, the insertion is easy.

� The public insert(AnyType x) decides on the new nodes

size by random choice, then calls the overloaded private
insert(AnyType x, int nodeSize) to do the work.

� Code in C is available in Dr. Anastasio’s HTML version

of these notes.

