CMSC 341

K-D Trees

K-D Tree

Introduction

o Multiple dimensional data
Range queries in databases of multiple keys:
Ex. find persons with
34 < age < 49 and $100k < annual income < $150k
GIS (geographic information system)
Computer graphics
o Extending BST from one dimensional to k-dimensional
It is a binary tree
Organized by levels (root is at level 0, its children level 1, etc.)

Tree branching at level 0 according to the first key, at level 1
according to the second key, etc.

KdNode

o Each node has a vector of keys, in addition to the
pointers to its subtrees.

8/3/2007 UMBC CSMC 341 KDTrees

‘ K-D Tree

= A 2-D tree example

99, 90

8/3/2007 UMBC CSMC 341 KDTrees

2-D Tree Operations

Insert

o A 2-D item (vector of size 2 for the two keys) is inserted

o New node is inserted as a leaf

o Different keys are compared at different levels

Find/print with an orthogonal (rectangular) range
high[1]

key[1]

low[1] key[0]
low[0] high[0]
o exact match: insert (low[level] = high[level] for all levels)
o partial match: (query ranges are given to only some of
the k keys, other keys can be thought in range +)

8/3/2007 UMBC CSMC 341 KDTrees

2-D Tree Insertion

public void insert (Vector <T> x)
{

root = insert(x, root, 0);

// this code is specific for 2-D trees
private KdNode<T> insert (Vector <T> x, KdNode<T> t, int level)

{
if (t == null)
t = new KdNode (x);

int compareResult = x.get (level) .compareTo(t.data.get (level));
if (compareResult < 0)

t.left = insert(x, t.left, 1 - level);
else if(compareResult > 0)

t.right = insert(x, t.right, 1 - level);

else
; // do nothing if equal

return t;

8/3/2007 UMBC CSMC 341 KDTrees

Insert (55, 62) into the following 2-D

tf€€ 55> 53, move right

62 > 51, move right

55 <99, move left

4

62 < 64, move left

Null pointer, attach

8/3/2007 UMBC CSMC 341 KDTrees 6

2-D Tree: printRange

/**
* Print items satisfying
* lowRange.get (0) <= x.get (0) <= highRange.get (0)
* and
* lowRange.get(l) <= x.get(l) <= highRange.get (1)
*/
public void printRange (Vector <T> lowRange,
Vector <T>highRange)

printRange (lowRange, highRange, root, 0);

8/3/2007 UMBC CSMC 341 KDTrees

2-D Tree: printRange (cont.)

private void

printRange (Vector <T> low,Vector <T> high,
KdNode<T> t, int level)

if (t !'= null)
{
if ((low.get (0).compareTo(t.data.get(0)) <= 0 &&
t.data.get (0) .compareTo(high.get (0)) <=0)
&& (low.get (1) .compareTo(t.data.get (1)) <= 0 &&
t.data.get (1) .compareTo(high.get (1)) <= 0))
System.out.println(" (" + t.data.get(0) + "," +
t.data.get (1) + ")");

if (low.get (level) .compareTo(t.data.get(level)) <= 0)
printRange (low, high, t.left, 1 - level);
if (high.get(level) .compareTo(t.data.get (level)) >= 0)
printRange (low, high, t.right, 1 - level);

8/3/2007 UMBC CSMC 341 KDTrees

printRange 1n a 2-D Tree

In range? If so, print cell ‘

low[level]<=data[level]->search t.left

high[level] >= data[level]-> search t. rlght @

4

low[0] = 35, high[0] = 40; This sub-tree is never searched.

— ' — 20 Searching is "preorder”. Efficiency is obtained
low[1] =23, high[1] = 30; by “pruning” subtrees from the search.

8/3/2007 UMBC CSMC 341 KDTrees

3-D Tree example

\
- *-

What property (or properties) do the nodes 1in
the subtrees labeled A, B, C, and D have?

8/3/2007 UMBC CSMC 341 KDTrees

K-D Operations

Modify the 2-D insert code so that it works for
K-D trees.

Modify the 2-D printRange code so that it
works for K-D trees.

8/3/2007 UMBC CSMC 341 KDTrees 11

K-D Tree Performance
Insert

o Average and balanced trees: O(lg N)
o Worst case: O(N)
Print/search with a square range query

o Exact match: same as insert (low[level] =
high[level] for all levels)
o Range query: for M matches
Perfectly balanced tree:
K-D trees: O(M + kN (1-1/k))
2-D trees: O(M + VN)

Partial match
in a random tree: O(M + N*) where o = (-3 + V17) / 2

8/3/2007 UMBC CSMC 341 KDTrees 12

K-D Tree Performance

More on range query in a perfectly balanced 2-D tree:
o Consider one boundary of the square (say, low[0])

o Let T(N) be the number of nodes to be looked at with respect
to low[0]. For the current node, we may need to look at

One of the two children (e.g., node (27, 28), and

Two of the four grand children (e.g., nodes (30, 11) and
(31, 85).

o Write T(N) =2 T(N/4) + ¢, where N/4 is the size of subtrees 2
levels down (we are dealing with a perfectly balanced tree
here), and ¢ = 3.

o Solving this recurrence equation:
T(N) =2T(N/4) + c =2(2T(N/16) +c) + C

= c(1+2+ - +2*log, N) =2"1+ log, N) — 1
= 2*2M(log, N) — 1 = 27 ((log, N)/2) — 1 = O(\N)

8/3/2007 UMBC CSMC 341 KDTrees

13

K-D Tree Remarks

Remove

o No good remove algorithm beyond lazy
deletion
(mark the node as removed)

Balancing K-D Tree

o No known strategy to guarantee a balanced 2-
D tree

o Periodic re-balance

Extending 2-D tree algorithms to k-D
o Cycle through the keys at each level

8/3/2007 UMBC CSMC 341 KDTrees

14

