CMSC 341

Introduction to Trees

Tree ADT

- Tree definition
- A tree is a set of nodes which may be empty
- If not empty, then there is a distinguished node \boldsymbol{r}, called root and zero or more non-empty subtrees $T_{1}, T_{2}, \ldots T_{k}$, each of whose roots are connected by a directed edge from r.
- This recursive definition leads to recursive tree algorithms and tree properties being proved by induction.
- Every node in a tree is the root of a subtree.

A Generic Tree

Tree Terminology

- Root of a subtree is a child of \mathbf{r}. \mathbf{r} is the parent.
- All children of a given node are called siblings.
- A leaf (or external) node has no children.
- An internal node is a node with one or more children

More Tree Terminology

- A path from node V_{1} to node V_{k} is a sequence of nodes such that V_{i} is the parent of V_{i+1} for $1 \leq i \leq k$.
- The length of this path is the number of edges encountered. The length of the path is one less than the number of nodes on the path ($k-1$ in this example)
- The depth of any node in a tree is the length of the path from root to the node.
- All nodes of the same depth are at the same level.

More Tree Terminology (cont.)

- The depth of a tree is the depth of its deepest leaf.
- The height of any node in a tree is the length of the longest path from the node to a leaf.
- The height of a tree is the height of its root.
- If there is a path from V_{1} to V_{2}, then V_{1} is an ancestor of V_{2} and V_{2} is a descendent of V_{1}.

A Unix directory tree

Tree Storage

- A tree node contains:
- Data Element
- Links to other nodes
- Any tree can be represented with the "firstchild, next-sibling" implementation.

```
class TreeNode
{
    Object element;
    TreeNode firstChild;
    TreeNode nextSibling;
```

\}

Printing a Child/Sibling Tree

```
// depth equals the number of tabs to indent name
private void listAll( int depth )
{
    printName( depth ); // Print the name of the object
    if( isDirectory( ) )
    for each file c in this directory (for each
child)
```

 C.listAll(depth + 1);
 public void listAll()
\{
listAll(0);
\}

- What is the output when listAll() is used for the Unix directory tree?

K-ary Tree

- If we know the maximum number of children each node will have, K , we can use an array of children references in each node.
class KTreeNode
$\{$
Object element;
KTreeNode children[K];
\}

Pseudocode for Printing a K-ary Tree

```
// depth equals the number of tabs to indent name
private void listAll( int depth )
{
    printElement( depth ); // Print the value of the
object
    if( children != null )
    for each child c in children array
        c.listAll( depth + 1 );
}
public void listAll( )
{
    listAll( 0 );
}
```


Binary Trees

- A special case of K-ary tree is a tree whose nodes have exactly two children pointers -- binary trees.
- A binary tree is a rooted tree in which no node can have more than two children AND the children are distinguished as left and right.

The Binary Node Class

```
private static class BinaryNode<AnyType>
{
        // Constructors
        BinaryNode( AnyType theElement )
        {
            this( theElement, null, null );
            }
            BinaryNode( AnyType theElement, BinaryNode<AnyType> lt,
                        BinaryNode<AnyType> rt )
            {
            element = theElement; left = lt; right = rt;
        }
            AnyType element; // The data in the node
            BinaryNode<AnyType> left; // Left child
            BinaryNode<AnyType> right; // Right child
}
```


Full Binary Tree

A full Binary Tree is a Binary Tree in which every node either has two children or is a leaf (every interior node has two children).

FBT Theorem

- Theorem: A FBT with \mathbf{n} internal nodes has n + 1 leaf nodes.
- Proof by strong induction on the number of internal nodes, n :
- Base case:
- Binary Tree of one node (the root) has:
- zero internal nodes
- one external node (the root)
- Inductive Assumption:
- Assume all FBTs with up to and including n internal nodes have $\mathrm{n}+1$ external nodes.

FBT Proof (cont'd)

- Inductive Step - prove true for a tree with $\mathrm{n}+1$ internal nodes (i.e. a tree with $n+1$ internal nodes has ($n+1$) $+1=n+2$ leaves)
- Let T be a FBT of n internal nodes.
- It therefore has $\mathrm{n}+1$ external nodes. (Inductive Assumption)
- Enlarge T so it has $n+1$ internal nodes by adding two nodes to some leaf. These new nodes are therefore leaf nodes.
- Number of leaf nodes increases by 2, but the former leaf becomes internal.
- So,
- \# internal nodes becomes $\mathrm{n}+1$,
- \# leaves becomes $(\mathrm{n}+1)+1=n+2$

Perfect Binary Tree

- A Perfect Binary Tree is a full Binary Tree in which all leaves have the same depth.

PBT Theorem

- Theorem: The number of nodes in a PBT is $2^{\mathrm{h}+1}-1$, where h is height.
- Proof by strong induction on h, the height of the PBT:
- Notice that the number of nodes at each level is 2^{\prime}. (Proof of this is a simple induction - left to student as exercise). Recall that the height of the root is 0 .
- Base Case:

The tree has one node; then $\mathrm{h}=0$ and $\mathrm{n}=1$ and $2^{(\mathrm{h}+}$ ${ }^{1)}=2^{(0+1)}-1=2^{1}-1=2-1=1=n$.

- Inductive Assumption:

Assume true for all PBTs with height $\mathrm{h} \leq \mathrm{H}$.

Proof of PBT Theorem(cont)

- Prove true for PBT with height $\mathrm{H}+1$:
- Consider a PBT with height $\mathrm{H}+1$. It consists of a rootand two subtrees of height H . Therefore, since the theorem is true for the subtrees (by the inductive assumption since they have height $=\mathrm{H}$)
- $\left.2^{(H+1)}-1\right) \quad$ for the left subtree
- $\left(2^{(H+1)}-1\right)$ for the right subtree
- 1 for the root
- Thus, $n=2$ * $\left(2^{(H+1)}-1\right)+1$
$=2^{((H+1)+1)}-2+1=2^{((H+1)+1)}-1$

Complete Binary Trees

- Complete Binary Tree
- A complete Binary Tree is a perfect Binary Tree except that the lowest level may not be full. If not, it is filled from left to right.

Tree Traversals

- Inorder
- Preorder
- Postorder
- Levelorder

Constructing Trees

- Is it possible to reconstruct a Binary Tree from just one of its pre-order, inorder, or postorder sequences?

Constructing Trees (cont)

- Given two sequences (say pre-order and inorder) is the tree unique?

How do we find something in a Binary Tree?

- We must recursively search the entire tree. Return a reference to node containing x, return NULL if x is not found
BinaryNode<AnyType> find (Object x)
\{
BinaryNode<AnyType> t = null;
// found it here
if (element.equals(x)) return element;
// not here, look in the left subtree
if(left != null)
t = left.find(x);
// if not in the left subtree, look in the right subtree
if ($\mathrm{t}==$ null)
t = right.find(x);
// return pointer, NULL if not found
return t;

Binary Trees and Recursion

- A Binary Tree can have many properties
- Number of leaves
- Number of interior nodes
- Is it a full binary tree?
- Is it a perfect binary tree?
- Height of the tree
- Each of these properties can be determined using a recursive function.

Recursive Binary Tree Function

```
return-type function (BinaryNode<AnyType> t)
{
        // base case - usually empty tree
    if (t == null) return xxxx;
    // determine if the node pointed to by t has the property
    // traverse down the tree by recursively "asking" left/right
    children
    // if their subtree has the property
    return theResult;
}
```


Is this a full binary tree?

```
boolean isFBT (BinaryNode<AnyType> t)
{
    // base case - an empty tee is a FBT
    if (t == null) return true;
    // determine if this node is "full"
    // if just one child, return - the tree is not full
    if ((t.left && !t.right) || (t.right && !t.left))
        return false;
    // if this node is full, "ask" its subtrees if they are full
    // if both are FBTs, then the entire tree is an FBT
    // if either of the subtrees is not FBT, then the tree is not
    return isFBT( t.right ) && isFBT( t.left );
}
```


Other Recursive Binary Tree Functions

- Count number of interior nodes
int countInteriorNodes(BinaryNode<AnyType> t);
- Determine the height of a binary tree. By convention (and for ease of coding) the height of an empty tree is -1
int height(BinaryNode<AnyType> t);
- Many others

Other Binary Tree Operations

- How do we insert a new element into a binary tree?
- How do we remove an element from a binary tree?

