Red-Black Trees

Definitions
and
Bottom-Up Insertion

Red-Black Trees

- Definition: A red-black tree is a binary search tree in which:
- Every node is colored either Red or Black.
- Each NULL pointer is considered to be a Black "node".
- If a node is Red, then both of its children are Black.
- Every path from a node to a NULL contains the same number of Black nodes.
- By convention, the root is Black
- Definition: The black-height of a node, X, in a red-black tree is the number of Black nodes on any path to a NULL, not counting X.

A Red-Black Tree with NULLs shown
Black-Height of the tree $($ the root $)=3$
Black-Height of node " X " = 2

A Red-Black Tree with
Black-Height $=3$

Black Height of the tree?
Black Height of X ?

Theorem 1 - Any red-black tree with root \boldsymbol{x}, has $\mathrm{n} \geq \mathbf{2}^{\mathrm{bh}(\mathrm{x})} \mathbf{- 1}$ nodes, where $\mathrm{bh}(\mathrm{x})$ is the black height of node x.
Proof: by induction on height of x.

Theorem 2 - In a red-black tree, at least half the nodes on any path from the root to a NULL must be Black.

Proof - If there is a Red node on the path, there must be a corresponding Black node.

Algebraically this theorem means

$$
b h(x) \geq h / 2
$$

Theorem 3 - In a red-black tree, no path from any node, X , to a NULL is more than twice as long as any other path from X to any other NULL.

Proof: By definition, every path from a node to any NULL contains the same number of Black nodes. By Theorem 2, a least $1 / 2$ the nodes on any such path are Black. Therefore, there can no more than twice as many nodes on any path from X to a NULL as on any other path. Therefore the length of every path is no more than twice as long as any other path.

Theorem 4 -

A red-black tree with \boldsymbol{n} nodes has height

$$
\mathrm{h} \leq 2 \lg (n+1)
$$

Proof: Let h be the height of the red-black tree with root x. By Theorem 2,

$$
b h(x) \geq h / 2
$$

From Theorem 1, $n \geq 2^{\mathrm{bh}(\mathrm{x})}-1$
Therefore $n \geq 2^{h / 2}-1$

$$
\begin{aligned}
& n+1 \geq 2^{h / 2} \\
& \lg (n+1) \geq h / 2 \\
& 2 \lg (n+1) \geq h
\end{aligned}
$$

Bottom -Up Insertion

- Insert node as usual in BST
- Color the node Red
- What Red-Black property may be violated?
- Every node is Red or Black?
- NULLs are Black?
- If node is Red, both children must be Black?
- Every path from node to descendant NULL must contain the same number of Blacks?

Bottom Up Insertion

- Insert node; Color it Red; X is pointer to it
- Cases

0 : X is the root -- color it Black
1: Both parent and uncle are Red -- color parent and uncle Black, color grandparent Red. Point X to grandparent and check new situation.
2 (zig-zag): Parent is Red, but uncle is Black. X and its parent are opposite type children -- color grandparent Red, color X Black, rotate left(right) on parent, rotate right(left) on grandparent
3 (zig-zig): Parent is Red, but uncle is Black. X and its parent are both left (right) children -- color parent Black, color grandparent Red, rotate right(left) on grandparent

Asymptotic Cost of Insertion

- $O(\lg n)$ to descend to insertion point
- $O(1)$ to do insertion
- $O(\lg \mathrm{n})$ to ascend and readjust $==$ worst case only for case 1
- Total: $O(\log n)$

Top-Down Insertion

An alternative to this "bottom-up" insertion is "top-down" insertion.
Top-down is iterative. It moves down the tree, "fixing" things as it goes.

What is the objective of top-down's "fixes"?

Insert 4 into this

R-B Tree

Black node

Insertion Practice

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty Red-Black Tree

