
Red-Black Trees

Definitions

and

Bottom-Up Insertion

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 2

Red-Black Trees

� Definition: A red-black tree is a binary
search tree in which:
� Every node is colored either Red or Black.

� Each NULL pointer is considered to be a Black “node”.

� If a node is Red, then both of its children are Black.

� Every path from a node to a NULL contains the same
number of Black nodes.

� By convention, the root is Black

� Definition: The black-height of a node, X, in
a red-black tree is the number of Black
nodes on any path to a NULL, not counting
X.

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 3

A Red-Black Tree with NULLs shown

Black-Height of the tree (the root) = 3

Black-Height of node “X” = 2

X

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 4

A Red-Black Tree with

Black-Height = 3

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 5

Black Height of the tree?

Black Height of X?

X

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 6

Theorem 1 – Any red-black tree with root x,
has n ≥ 2bh(x) – 1 nodes, where bh(x) is

the black height of node x.

Proof: by induction on height of x.

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 7

Theorem 2 – In a red-black tree, at least half

the nodes on any path from the root to a

NULL must be Black.

Proof – If there is a Red node on the path,

there must be a corresponding Black

node.

Algebraically this theorem means

bh(x) ≥ h/2

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 8

Theorem 3 – In a red-black tree, no path from any
node, X, to a NULL is more than twice as long as
any other path from X to any other NULL.

Proof: By definition, every path from a node to any

NULL contains the same number of Black nodes.
By Theorem 2, a least ½ the nodes on any such

path are Black. Therefore, there can no more
than twice as many nodes on any path from X to

a NULL as on any other path. Therefore the
length of every path is no more than twice as
long as any other path.

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 9

Theorem 4 –

A red-black tree with n nodes has height
h ≤ 2 lg(n + 1).

Proof: Let h be the height of the red-black
tree with root x. By Theorem 2,

bh(x) ≥ h/2

From Theorem 1, n ≥ 2bh(x) - 1

Therefore n ≥ 2 h/2 – 1

n + 1 ≥ 2h/2

lg(n + 1) ≥ h/2

2lg(n + 1) ≥ h

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 10

Bottom –Up Insertion

� Insert node as usual in BST

� Color the node Red

� What Red-Black property may be violated?
� Every node is Red or Black?

� NULLs are Black?

� If node is Red, both children must be Black?

� Every path from node to descendant NULL must
contain the same number of Blacks?

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 11

Bottom Up Insertion

� Insert node; Color it Red; X is pointer to it

� Cases
0: X is the root -- color it Black

1: Both parent and uncle are Red -- color parent and
uncle Black, color grandparent Red. Point X to
grandparent and check new situation.

2 (zig-zag): Parent is Red, but uncle is Black. X and its
parent are opposite type children -- color grandparent
Red, color X Black, rotate left(right) on parent, rotate
right(left) on grandparent

3 (zig-zig): Parent is Red, but uncle is Black. X and its
parent are both left (right) children -- color parent Black,
color grandparent Red, rotate right(left) on grandparent

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 12

X

P

G

U

P

G

U

Case 1 – U is Red

Just Recolor and move up

X

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 13

X

P

G

U

S X

P G

S

U

Case 2 – Zig-Zag

Double Rotate

X around P; X around G

Recolor G and X

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 14

X

P

G

U

S
P

X
G

S U

Case 3 – Zig-Zig

Single Rotate P around G

Recolor P and G

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 15

Asymptotic Cost of Insertion

� O(lg n) to descend to insertion point

� O(1) to do insertion

� O(lg n) to ascend and readjust == worst case

only for case 1

� Total: O(log n)

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 16

Top-Down Insertion

An alternative to this “bottom-up” insertion is

“top-down” insertion.

Top-down is iterative. It moves down the tree,

“fixing” things as it goes.

What is the objective of top-down’s “fixes”?

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 17

11

14

15

2

1
7

5
8

Black node Red node

Insert 4 into this

R-B Tree

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 18

Insertion Practice

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an

initially empty Red-Black Tree

