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Red-Black Trees

� Definition: A red-black tree is a binary 
search tree in which:
� Every node is colored either Red or Black.

� Each NULL pointer is considered to be a Black “node”.

� If a node is Red, then both of its children are Black.

� Every path from a node to a NULL contains the same 
number of Black nodes.

� By convention, the root is Black

� Definition:  The black-height of a node, X, in 
a red-black tree is the number of Black 
nodes on any path to a NULL, not counting 
X.



8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 3

A Red-Black Tree with NULLs shown

Black-Height of the tree (the root) = 3

Black-Height of node “X” = 2

X
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A Red-Black Tree with

Black-Height = 3
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Black Height of the tree?

Black Height of X?

X
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Theorem 1 – Any red-black tree with root x, 
has  n ≥ 2bh(x) – 1 nodes, where bh(x) is 

the black height of node x.

Proof: by induction on height of x.
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Theorem 2 – In a red-black tree, at least half 

the nodes on any path from the root to a 

NULL must be Black.

Proof – If there is a Red node on the path, 

there must be a corresponding Black 

node.

Algebraically this theorem means

bh( x ) ≥ h/2
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Theorem 3 – In a red-black tree, no path from any 
node, X, to a NULL is more than twice as long as 
any other path from X to any other NULL.

Proof:  By definition, every path from a node to any 

NULL contains the same number of Black nodes.  
By Theorem 2, a least ½ the nodes on any such 

path are Black.  Therefore, there can no more 
than twice as many nodes on any path from X to 

a NULL as on any other path.  Therefore the 
length of every path is no more than twice as 
long as any other path.
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Theorem 4 –

A red-black tree with n nodes has height  
h ≤ 2 lg(n + 1).

Proof: Let h be the height of the red-black 
tree with root x. By Theorem 2,

bh(x) ≥ h/2

From Theorem 1, n ≥ 2bh(x) - 1

Therefore n ≥ 2 h/2 – 1

n + 1 ≥ 2h/2

lg(n + 1) ≥ h/2

2lg(n + 1) ≥ h
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Bottom –Up Insertion

� Insert node as usual in BST

� Color the node Red

� What Red-Black property may be violated?
� Every node is Red or Black?

� NULLs are Black?

� If node is Red, both children must be Black?

� Every path from node to descendant NULL must 
contain the same number of Blacks?
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Bottom Up Insertion

� Insert node; Color it Red; X is pointer to it

� Cases
0:  X is the root -- color it Black

1:  Both parent and uncle are Red -- color parent and 
uncle Black, color grandparent Red. Point X to 
grandparent and check new situation.

2 (zig-zag): Parent is Red, but uncle is Black. X and its 
parent are opposite type children -- color grandparent 
Red, color X Black, rotate left(right) on parent, rotate 
right(left) on grandparent

3 (zig-zig):  Parent is Red, but uncle is Black. X and its 
parent are both left (right) children -- color parent Black, 
color grandparent Red, rotate right(left) on grandparent
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X

P

G

U

P

G

U

Case 1 – U is Red

Just Recolor and move up

X
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X

P

G

U

S X

P G

S

U

Case 2 – Zig-Zag

Double Rotate

X around P; X around G

Recolor G and X
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X

P

G

U

S
P

X
G

S U

Case 3 – Zig-Zig

Single Rotate P around G

Recolor P and G
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Asymptotic Cost of Insertion

� O(lg n) to descend to insertion point

� O(1) to do insertion

� O(lg n) to ascend and readjust == worst case 

only for case 1

� Total: O(log n)
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Top-Down Insertion

An alternative to this “bottom-up” insertion is 

“top-down” insertion.

Top-down is iterative.  It moves down the tree, 

“fixing” things as it goes.

What is the objective of top-down’s “fixes”?
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1
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8

Black node Red node

Insert 4 into this 

R-B Tree
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Insertion Practice

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an 

initially empty Red-Black Tree


