
CMSC 341

Binary Heaps

Priority Queues

8/3/2007 UMBC CSMC 341 PQueue 2

Priority Queues

� Priority: some property of an object that allows it to be
prioritized with respect to other objects of the same type

� Min Priority Queue: homogeneous collection of Comparables
with the following operations (duplicates are allowed). Smaller
value means higher priority.
� void insert (Comparable x)

� void deleteMin()

� void deleteMin (Comparable min)

� Comparable findMin()

� Construct from a set of initial values

� boolean isEmpty()

� boolean isFull()

� void makeEmpty()

8/3/2007 UMBC CSMC 341 PQueue 3

Priority Queue Applications

� Printer management:

� The shorter document on the printer queue, the
higher its priority.

� Jobs queue within an operating system:

� Users’ tasks are given priorities. System priority
high.

� Simulations

� The time an event “happens” is its priority.

� Sorting (heap sort)

� An elements “value” is its priority.

8/3/2007 UMBC CSMC 341 PQueue 4

Possible Implementations
� Use a sorted list. Sorted by priority upon

insertion.

� findMin() --> list.front()

� insert() --> list.insert()

� deleteMin() --> list.erase(list.begin())

� Use ordinary BST

� findMin() --> tree.findMin()

� insert() --> tree.insert()

� deleteMin() --> tree.delete(tree.findMin())

� Use balanced BST

� guaranteed O(lg n) for Red-Black

8/3/2007 UMBC CSMC 341 PQueue 5

Min Binary Heap

� A min binary heap is a complete binary tree with

the further property that at every node neither

child is smaller than the value in that node (or

equivalently, both children are at least as large

as that node).

� This property is called a partial ordering.

� As a result of this partial ordering, every path

from the root to a leaf visits nodes in a non-

decreasing order.

� What other properties of the Min Binary Heap

result from this property?

8/3/2007 UMBC CSMC 341 PQueue 6

Min Binary Heap Performance

� Performance (n is the number of elements in

the heap)
� construction O(n)

� findMin O(1)

� insert O(lg n)

� deleteMin O(lg n)

� Heap efficiency results, in part, from the

implementation

� Conceptually a complete binary tree

� Implementation in an array/vector (in level order)
with the root at index 1

8/3/2007 UMBC CSMC 341 PQueue 7

Min Binary Heap Properties

� For a node at index i

� its left child is at index 2i

� its right child is at index 2i+1

� its parent is at index i/2

� No pointer storage

� Fast computation of 2i and i/2 by bit shifting

i << 1 = 2i

i >> 1 = i/2

8/3/2007 UMBC CSMC 341 PQueue 8

Heap is a Complete Binary Tree

8/3/2007 UMBC CSMC 341 PQueue 9

Which satisfies the properties of a Heap?

8/3/2007 UMBC CSMC 341 PQueue 10

Min BinaryHeap Definition
public class

BinaryHeap<AnyType extends Comparable<? super AnyType>>

{

public BinaryHeap() { /* See online code */ }

public BinaryHeap(int capacity){ /* See online code */ }

public BinaryHeap(AnyType [] items){/* Figure 6.14 */ }

public void insert(AnyType x) { /* Figure 6.8 */ }

public AnyType findMin() { /* TBD */ }

public AnyType deleteMin() { /* Figure 6.12 */ }

public boolean isEmpty() { /* See online code */ }

public void makeEmpty() { /* See online code */ }

private static final int DEFAULT_CAPACITY = 10;

private int currentSize; // Number of elements in heap

private AnyType [] array; // The heap array

private void percolateDown(int hole){/* Figure 6.12 */ }

private void buildHeap() { /* Figure 6.14 */ }

private void enlargeArray(int newSize){/* code online */}

}

8/3/2007 UMBC CSMC 341 PQueue 11

Min BinaryHeap Implementation

public AnyType findMin()

{

if (isEmpty()) throw Underflow();

return array[1];

}

8/3/2007 UMBC CSMC 341 PQueue 12

Insert Operation
� Must maintain

� CBT property (heap shape):

� Easy, just insert new element at “the end” of the array

� Min heap order

� Could be wrong after insertion if new element is smaller

than its ancestors

� Continuously swap the new element with its parent until
parent is not greater than it

� Called sift up or percolate up

� Performance of insert is O(lg n) in the worst

case because the height of a CBT is O(lg n)

8/3/2007 UMBC CSMC 341 PQueue 13

Min BinaryHeap Insert (cont.)
/**

* Insert into the priority queue, maintaining heap order.

* Duplicates are allowed.

* @param x the item to insert.

*/

public void insert(AnyType x)

{

if(currentSize == array.length - 1)

enlargeArray(array.length * 2 + 1);

// Percolate up

int hole = ++currentSize;

for(; hole > 1&& x.compareTo(array[hole/2]) < 0; hole/=2)

array[hole] = array[hole / 2];

array[hole] = x;

}

8/3/2007 UMBC CSMC 341 PQueue 14

Insert 14

8/3/2007 UMBC CSMC 341 PQueue 15

Deletion Operation

� Steps

� Remove min element (the root)

� Maintain heap shape

� Maintain min heap order

� To maintain heap shape, actual node

removed is “last one” in the array

� Replace root value with value from last node and
delete last node

� Sift-down the new root value

� Continually exchange value with the smaller child until

no child is smaller.

8/3/2007 UMBC CSMC 341 PQueue 16

Min BinaryHeap Deletion(cont.)
/**

* Remove the smallest item from the priority queue.

* @return the smallest item, or throw

UnderflowException, if empty.

*/

public AnyType deleteMin()

{

if(isEmpty())

throw new UnderflowException();

AnyType minItem = findMin();

array[1] = array[currentSize--];

percolateDown(1);

return minItem;

}

8/3/2007 UMBC CSMC 341 PQueue 17

MinBinaryHeap percolateDown(cont.)

/**

* Internal method to percolate down in the heap.

* @param hole the index at which the percolate begins.

*/

private void percolateDown(int hole)

{

int child;

AnyType tmp = array[hole];

for(; hole * 2 <= currentSize; hole = child){

child = hole * 2;

if(child != currentSize &&

array[child + 1].compareTo(array[child]) < 0)

child++;

if(array[child].compareTo(tmp) < 0)

array[hole] = array[child];

else

break;

}

array[hole] = tmp;

}

8/3/2007 UMBC CSMC 341 PQueue 18

deleteMin

8/3/2007 UMBC CSMC 341 PQueue 19

deleteMin (cont.)

8/3/2007 UMBC CSMC 341 PQueue 20

Constructing a Min BinaryHeap

� A BH can be constructed in O(n) time.

� Suppose we are given an array of objects in

an arbitrary order. Since it’s an array with no

holes, it’s already a CBT. It can be put into

heap order in O(n) time.

� Create the array and store n elements in it in

arbitrary order. O(n) to copy all the objects.

� Heapify the array starting in the “middle” and
working your way up towards the root

for (int index = n/2 ; index > 0; index--)

percolateDown(index);

8/3/2007 UMBC CSMC 341 PQueue 21

Constructing a Min BinaryHeap(cont.)

//Construct the binary heap given an array of items.

public BinaryHeap(AnyType [] items){

currentSize = items.length;

array = (AnyType[]) new Comparable[(currentSize + 2)*11/10];

int i = 1;

for(AnyType item : items)

array[i++] = item;

buildHeap();

}

// Establish heap order property from an arbitrary

// arrangement of items. Runs in linear time.

private void buildHeap(){

for(int i = currentSize / 2; i > 0; i--)

percolateDown(i);

}

8/3/2007 UMBC CSMC 341 PQueue 22

Performance of Construction

� A CBT has 2h-1 nodes on level h-1.

� On level h-l, at most 1 swap is needed per node.

� On level h-2, at most 2 swaps are needed.

� …

� On level 0, at most h swaps are needed.

� Number of swaps = S

= 2h*0 + 2h-1*1 + 2h-2*2 + … + 20*h

=

= h(2h+1-1) - ((h-1)2h+1+2)

= 2h+1(h-(h-1))-h-2

= 2h+1-h-2

∑∑∑
===

−=−

h

i

i

h

i

i

h

i

i
ihih

000

22)(2

8/3/2007 UMBC CSMC 341 PQueue 23

Performance of Construction (cont.)

� But 2h+1-h-2 = O(2h)

� But n = 1 + 2 + 4 + … + 2h =

� Therefore, n = O(2h)

� So S = O(n)

� A heap of n nodes can be built in O(n) time.

∑
=

h

i

i

0

2

8/3/2007 UMBC CSMC 341 PQueue 24

Heap Sort
� Given n values we can sort them in place in O(n log n) time

� Insert values into array -- O(n)

� heapify -- O(n)

� repeatedly delete min -- O(lg n), n times

� Using a min heap, this code sorts in reverse (high down to

low) order.

� With a max heap, it sorts in normal (low up to high) order.

� Given an unsorted array A[] of size n
for (i = n-1; i >= 1; i--)

{

x = findMin();

deleteMin();

A[i+1] = x;

}

8/3/2007 UMBC CSMC 341 PQueue 25

Limitations

� MinBinary heaps support insert, findMin,

deleteMin, and construct efficiently.

� They do not efficiently support the meld or

merge operation in which 2 BHs are merged

into one. If H1 and H2 are of size n1 and n2,

then the merge is in O(n1 + n2) .

8/3/2007 UMBC CSMC 341 PQueue 26

Leftist Min Heap

� Supports

� findMin -- O(1)

� deleteMin -- O(lg n)

� insert -- O(lg n)

� construct -- O(n)

� merge -- O(lg n)

8/3/2007 UMBC CSMC 341 PQueue 27

Leftist Tree
� The null path length, npl(X), of a node, X, is defined as the length of

the shortest path from X to a node without two children (a non-full
node).

� Note that npl(NULL) = -1.

� A Leftist Tree is a binary tree in which at each node X, the null path
length of X’s right child is not larger than the null path length of the X’s
left child .
I.E. the length of the path from X’s right child to its nearest non-full node
is not larger than the length of the path from X’s left child to its nearest
non-full node.

� An important property of leftist trees:

� At every node, the shortest path to a non-full node is along the
rightmost path.

“Proof”: Suppose this was not true. Then, at some node the path on
the left would be shorter than the path on the right, violating the
leftist tree definition.

8/3/2007 UMBC CSMC 341 PQueue 28

Leftist Min Heap
� A leftist min heap is a leftist tree in which

the values in the nodes obey heap order (the

tree is partially ordered).

� Since a LMH is not necessarily a CBT we do

not implement it in an array. An explicit tree

implementation is used.

� Operations
� findMin -- return root value, same as MBH

� deleteMin -- implemented using meld operation

� insert -- implemented using meld operation

� construct -- implemented using meld operation

8/3/2007 UMBC CSMC 341 PQueue 29

Merge
// Merge rhs into the priority queue.

// rhs becomes empty. rhs must be different from this.

// @param rhs the other leftist heap.

public void merge(LeftistHeap<AnyType> rhs){

if(this == rhs) return; // Avoid aliasing problems

root = merge(root, rhs.root);

rhs.root = null;

}

// Internal method to merge two roots.

// Deals with deviant cases and calls recursive merge1.

private Node<AnyType> merge(Node<AnyType> h1, Node<AnyType> h2){

if(h1 == null) return h2;

if(h2 == null) return h1;

if(h1.element.compareTo(h2.element) < 0)

return merge1(h1, h2);

else

return merge1(h2, h1);

}

8/3/2007 UMBC CSMC 341 PQueue 30

Merge (cont.)

/**

* Internal method to merge two roots.

* Assumes trees are not empty, and h1's root contains smallest item.

*/

private Node<AnyType> merge1(Node<AnyType> h1, Node<AnyType> h2)

{

if(h1.left == null) // Single node

h1.left = h2; // Other fields in h1 already accurate

else

{

h1.right = merge(h1.right, h2);

if(h1.left.npl < h1.right.npl)

swapChildren(h1);

h1.npl = h1.right.npl + 1;

}

return h1;

}

8/3/2007 UMBC CSMC 341 PQueue 31

Merge (cont.)

� Performance: O(lg n)

� The rightmost path of each tree has at most

lg(n+1) nodes. So O(lg n) nodes will be
involved.

8/3/2007 UMBC CSMC 341 PQueue 32

8/3/2007 UMBC CSMC 341 PQueue 33

8/3/2007 UMBC CSMC 341 PQueue 34

8/3/2007 UMBC CSMC 341 PQueue 35

Student Exercise

� Show the steps needed to merge the Leftist

Heaps below. The final result is shown on the

next slide.

6

1217

19 20

8

1510

30 25

8/3/2007 UMBC CSMC 341 PQueue 36

Student Exercise Final Result

6

178

12 1910

20 15

25

30

8/3/2007 UMBC CSMC 341 PQueue 37

Min Leftist Heap Operations

� Other operations implemented using Merge()

� insert (item)

� Make item into a 1-node LH, X

� Merge(this, X)

� deleteMin

� Merge(left subtree, right subtree)

� construct from N items

� Make N LHs from the N values, one element in each

� Merge each in

� one at a time (simple, but slow)

� use queue and build pairwise (complex but faster)

8/3/2007 UMBC CSMC 341 PQueue 38

LH Construct

� Algorithm:

Make n leftist heaps, H1….Hn each with one data
value

Instantiate Queue<LeftistHeap> q;

for (i = 1; i <= n; i++)

q.enqueue(Hi);

Leftist Heap h = q.dequeue();

while (!q.isEmpty())

q.enqueue(merge(h, q.dequeue()));

h = q.dequeue();

