CMSC 341

K-D Trees

K-D Tree

- Introduction
- Multiple dimensional data
- Range queries in databases of multiple keys:

Ex. find persons with
$34 \leq$ age ≤ 49 and $\$ 100 \mathrm{k} \leq$ annual income $\leq \$ 150 \mathrm{k}$

- GIS (geographic information system)
- Computer graphics
- Extending BST from one dimensional to k-dimensional
- It is a binary tree
- Organized by levels (root is at level 0, its children level 1, etc.)
- Tree branching at level 0 according to the first key, at level 1 according to the second key, etc.
- KdNode
- Each node has a vector of keys, in addition to the pointers to its subtrees.

K-D Tree

- A 2-D tree example

2- Insert Tree Operations

- A 2-D item (vector of size 2 for the two keys) is inserted
- New node is inserted as a leaf
- Different keys are compared at different levels
- Find/print with an orthogonal (rectangular) range

- exact match: insert (low[level] = high[level] for all levels)
- partial match: (query ranges are given to only some of the k keys, other keys can be thought in range $\pm \infty$)

2-D Tree Insertion

```
public void insert(Vector <T> x)
{
    root = insert( x, root, 0);
}
// this code is specific for 2-D trees
private KdNode<T> insert(Vector <T> x, KdNode<T> t, int level)
{
    if (t == null)
        t = new KdNode(x);
        int compareResult = x.get(level).compareTo(t.data.get(level));
        if (compareResult < 0)
            t.left = insert(x, t.left, 1 - level);
        else if( compareResult > 0)
            t.right = insert(x, t.right, 1 - level);
        else
            ; // do nothing if equal
    return t;
}
```


Insert $(55,62)$ into the following 2-D

2-D Tree: printRange

```
/**
    * Print items satisfying
    * lowRange.get(0) <= x.get(0) <= highRange.get(0)
    * and
    * lowRange.get(1) <= x.get(1) <= highRange.get(1)
    */
public void printRange(Vector <T> lowRange,
                                    Vector <T>highRange)
{
        printRange(lowRange, highRange, root, 0);
}
```


2-D Tree: printRange (cont.)

```
private void
printRange(Vector <T> low,Vector <T> high,
                                KdNode<T> t, int level)
{
    if (t != null)
    {
        if ((low.get(0).compareTo(t.data.get(0)) <= 0 &&
                    t.data.get(0).compareTo(high.get(0)) <=0)
            &&(low.get(1).compareTo(t.data.get(1)) <= 0 &&
                    t.data.get(1).compareTo(high.get(1)) <= 0))
        System.out.println("(" + t.data.get(0) + "," +
                                    t.data.get(1) + ")");
        if (low.get(level).compareTo(t.data.get(level)) <= 0)
                printRange(low, high, t.left, 1 - level);
        if (high.get(level).compareTo(t.data.get(level)) >= 0)
                printRange(low, high, t.right, 1 - level);
    }
}
```


printRange in a 2-D Tree

$\operatorname{low}[0]=35, \operatorname{high}[0]=40$;

$$
\operatorname{low}[1]=23, \operatorname{high}[1]=30
$$

This sub-tree is never searched.
Searching is "preorder". Efficiency is obtained by "pruning" subtrees from the search.

3-D Tree example

What property (or properties) do the nodes in the subtrees labeled A, B, C, and D have?

K-D Operations

- Modify the 2-D insert code so that it works for K-D trees.
- Modify the 2-D printRange code so that it works for K-D trees.

K-D Tree Performance

- Insert
- Average and balanced trees: O(lg N)
- Worst case: O(N)
- Print/search with a square range query
- Exact match: same as insert (low[level] = high[level] for all levels)
- Range query: for M matches
- Perfectly balanced tree:

$$
\text { K-D trees: } \mathrm{O}\left(\mathrm{M}+\mathrm{kN}{ }^{(1-1 / k)}\right)
$$

2-D trees: $O(M+\sqrt{ } N)$

- Partial match in a random tree: $\mathrm{O}\left(\mathrm{M}+\mathrm{N}^{\alpha}\right)$ where $\alpha=(-3+\sqrt{ } 17) / 2$

K-D Tree Performance

- More on range query in a perfectly balanced 2-D tree:
- Consider one boundary of the square (say, low[0])
- Let $T(N)$ be the number of nodes to be looked at with respect to low[0]. For the current node, we may need to look at
- One of the two children (e.g., node (27, 28), and
- Two of the four grand children (e.g., nodes $(30,11)$ and (31, 85).
- Write $T(N)=2 T(N / 4)+c$, where $N / 4$ is the size of subtrees 2 levels down (we are dealing with a perfectly balanced tree here), and $\mathrm{c}=3$.
- Solving this recurrence equation:
$\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 4)+\mathrm{c}=2(2 \mathrm{~T}(\mathrm{~N} / 16)+\mathrm{c})+\mathrm{c}$

$$
\begin{aligned}
& =c\left(1+2+\cdots+2^{\wedge}\left(\log _{4} N\right)=2^{\wedge}\left(1+\log _{4} N\right)-1\right. \\
& =2^{*} 2^{\wedge}\left(\log _{4} N\right)-1=2^{\wedge}\left(\left(\log _{2} N\right) / 2\right)-1=O(\sqrt{ } N)
\end{aligned}
$$

K-D Tree Remarks

- Remove
- No good remove algorithm beyond lazy deletion
(mark the node as removed)
- Balancing K-D Tree
- No known strategy to guarantee a balanced 2D tree
- Periodic re-balance
- Extending 2-D tree algorithms to k-D
- Cycle through the keys at each level

