
CMSC 341

K-D Trees

8/3/2007 UMBC CSMC 341 KDTrees 2

K-D Tree
� Introduction

� Multiple dimensional data
� Range queries in databases of multiple keys:

Ex. find persons with

34 ≤ age ≤ 49 and $100k ≤ annual income ≤ $150k

� GIS (geographic information system)

� Computer graphics

� Extending BST from one dimensional to k-dimensional
� It is a binary tree

� Organized by levels (root is at level 0, its children level 1, etc.)

� Tree branching at level 0 according to the first key, at level 1
according to the second key, etc.

� KdNode
� Each node has a vector of keys, in addition to the

pointers to its subtrees.

8/3/2007 UMBC CSMC 341 KDTrees 3

K-D Tree

� A 2-D tree example

8/3/2007 UMBC CSMC 341 KDTrees 4

� Insert

� A 2-D item (vector of size 2 for the two keys) is inserted

� New node is inserted as a leaf

� Different keys are compared at different levels

� Find/print with an orthogonal (rectangular) range

� exact match: insert (low[level] = high[level] for all levels)

� partial match: (query ranges are given to only some of
the k keys, other keys can be thought in range ± ∞)

2-D Tree Operations

low[0]

low[1]

high[0]

high[1]

key[1]

key[0]

8/3/2007 UMBC CSMC 341 KDTrees 5

2-D Tree Insertion

public void insert(Vector <T> x)

{

root = insert(x, root, 0);

}

// this code is specific for 2-D trees

private KdNode<T> insert(Vector <T> x, KdNode<T> t, int level)

{

if (t == null)

t = new KdNode(x);

int compareResult = x.get(level).compareTo(t.data.get(level));

if (compareResult < 0)

t.left = insert(x, t.left, 1 - level);

else if(compareResult > 0)

t.right = insert(x, t.right, 1 - level);

else

; // do nothing if equal

return t;

}

8/3/2007 UMBC CSMC 341 KDTrees 6

Insert (55, 62) into the following 2-D

tree
53, 14

27, 28 65, 51

31, 8530, 11 70, 3 99, 90

29, 16 40, 26 7, 39 32, 29 82, 64

73, 7515, 61
38, 23 55,62

55 > 53, move right

62 > 51, move right

55 < 99, move left

62 < 64, move left

Null pointer, attach

8/3/2007 UMBC CSMC 341 KDTrees 7

2-D Tree: printRange

/**

* Print items satisfying

* lowRange.get(0) <= x.get(0) <= highRange.get(0)

* and

* lowRange.get(1) <= x.get(1) <= highRange.get(1)

*/

public void printRange(Vector <T> lowRange,

Vector <T>highRange)

{

printRange(lowRange, highRange, root, 0);

}

8/3/2007 UMBC CSMC 341 KDTrees 8

2-D Tree: printRange (cont.)
private void

printRange(Vector <T> low,Vector <T> high,

KdNode<T> t, int level)

{

if (t != null)

{

if ((low.get(0).compareTo(t.data.get(0)) <= 0 &&

t.data.get(0).compareTo(high.get(0)) <=0)

&&(low.get(1).compareTo(t.data.get(1)) <= 0 &&
t.data.get(1).compareTo(high.get(1)) <= 0))

System.out.println("(" + t.data.get(0) + "," +

t.data.get(1) + ")");

if (low.get(level).compareTo(t.data.get(level)) <= 0)

printRange(low, high, t.left, 1 - level);

if (high.get(level).compareTo(t.data.get(level)) >= 0)

printRange(low, high, t.right, 1 - level);

}

}

8/3/2007 UMBC CSMC 341 KDTrees 9

printRange in a 2-D Tree

53, 14

27, 28

31, 8530, 11

40, 26 32, 29

38, 23

65, 51

70, 3 99, 90

82, 64

73, 75

29, 16 7, 39

15, 61

low[0] = 35, high[0] = 40;

In range? If so, print cell

low[level]<=data[level]->search t.left

high[level] >= data[level]-> search t.right

This sub-tree is never searched.

Searching is “preorder”. Efficiency is obtained
by “pruning” subtrees from the search.

low[1] = 23, high[1] = 30;

8/3/2007 UMBC CSMC 341 KDTrees 10

3-D Tree example

20,12,30

15,18,27 40,12,39

17,16,22 19,19,37 22,10,33 25,24,10

16,15,20

12,14,20 18,16,18

24,9,30 50,11,40

DB CA

X < 20 X > 20

Y < 18
Y > 18

Z < 22

X > 16X < 16

Y > 12Y < 12

Z < 33
Z > 33

What property (or properties) do the nodes in

the subtrees labeled A, B, C, and D have?

8/3/2007 UMBC CSMC 341 KDTrees 11

K-D Operations

� Modify the 2-D insert code so that it works for
K-D trees.

� Modify the 2-D printRange code so that it
works for K-D trees.

8/3/2007 UMBC CSMC 341 KDTrees 12

K-D Tree Performance
� Insert

� Average and balanced trees: O(lg N)

� Worst case: O(N)

� Print/search with a square range query

� Exact match: same as insert (low[level] =
high[level] for all levels)

� Range query: for M matches

� Perfectly balanced tree:

K-D trees: O(M + kN (1-1/k))

2-D trees: O(M + √N)

� Partial match

in a random tree: O(M + Nα) where α = (-3 + √17) / 2

8/3/2007 UMBC CSMC 341 KDTrees 13

K-D Tree Performance
� More on range query in a perfectly balanced 2-D tree:

� Consider one boundary of the square (say, low[0])

� Let T(N) be the number of nodes to be looked at with respect
to low[0]. For the current node, we may need to look at

� One of the two children (e.g., node (27, 28), and

� Two of the four grand children (e.g., nodes (30, 11) and
(31, 85).

� Write T(N) = 2 T(N/4) + c, where N/4 is the size of subtrees 2
levels down (we are dealing with a perfectly balanced tree
here), and c = 3.

� Solving this recurrence equation:

T(N) = 2T(N/4) + c = 2(2T(N/16) + c) + c

…

= c(1 + 2 + ⋅⋅⋅ + 2^(log4 N) = 2^(1+ log4 N) – 1

= 2*2^(log4 N) – 1 = 2^ ((log2 N)/2) – 1 = O(√N)

8/3/2007 UMBC CSMC 341 KDTrees 14

K-D Tree Remarks
� Remove

� No good remove algorithm beyond lazy
deletion
(mark the node as removed)

� Balancing K-D Tree

� No known strategy to guarantee a balanced 2-
D tree

� Periodic re-balance

� Extending 2-D tree algorithms to k-D

� Cycle through the keys at each level

