
CMSC 341

Graphs

8/3/2007 UMBC CMSC 341 Graphs 2

Basic Graph Definitions

� A graph G = (V,E) consists of a finite set

of vertices, V, and a finite set of edges, E.

� Each edge is a pair (v,w) where v, w ∈ V.

� V and E are sets, so each vertex v ∈ V is

unique, and each edge e ∈ E is unique.

� Edges are sometimes called arcs or lines.

� Vertices are sometimes called nodes or

points.

8/3/2007 UMBC CMSC 341 Graphs 3

Graph Applications

� Graphs can be used to model a wide range

of applications including

� Intersections and streets within a city

� Roads/trains/airline routes connecting

cities/countries

� Computer networks

� Electronic circuits

8/3/2007 UMBC CMSC 341 Graphs 4

Basic Graph Definitions (2)

� A directed graph is a graph in which the
edges are ordered pairs.
That is, (u,v) ≠ (v,u), u, v ∈ V.
Directed graphs are sometimes called
digraphs.

� An undirected graph is a graph in which the
edges are unordered pairs.
That is, (u,v) = (v,u).

� A sparse graph is one with “few” edges.
That is |E| = O(|V|)

� A dense graph is one with “many” edges.
That is |E| = O(|V|2)

8/3/2007 UMBC CMSC 341 Graphs 5

Undirected Graph

� All edges are two-way. Edges are unordered

pairs.

� V = { 1, 2 ,3, 4, 5}

� E = { (1,2), (2, 3), (3, 4), (2, 4), (4, 5), (5, 1) }

2

1

3 4

5

8/3/2007 UMBC CMSC 341 Graphs 6

Directed Graph
1

52

3 4

� All edges are “one-way” as indicated by the arrows.

Edges are ordered pairs.

� V = { 1, 2, 3, 4, 5}

� E = { (1, 2), (2, 4), (3, 2), (4, 3), (4, 5), (5, 4), (5, 1) }

8/3/2007 UMBC CMSC 341 Graphs 7

A Single Graph with Multiple
Components

7

6

9

8
2

1

3 4

5

8/3/2007 UMBC CMSC 341 Graphs 8

Basic Graph Definitions (3)

� Vertex w is adjacent to vertex v if and only if (v, w)

∈ E.

� For undirected graphs, with edge (v, w), and hence
also (w, v), w is adjacent to v and v is adjacent to
w.

� An edge may also have:

� weight or cost -- an associated value

� label -- a unique name

� The degree of a vertex, v, is the number of

vertices adjacent to v. Degree is also called
valence.

Basic Graph Definitions (4)

� For directed graphs vertex w is adjacent to vertex v if

and only if (v, w) ∈ E.

� Indegree of a vertex w is the number of edges (v,w).

� OutDegree of a vertex w is the number of edges(w,v).

1

52

3 4

2

1

3 4

5

8/3/2007 UMBC CMSC 341 Graphs 10

Paths in Graphs
� A path in a graph is a sequence of vertices w1, w2, w3, …, wn

such that (wi, wi+1) ∈ E for 1 ≤ i < n.

� The length of a path in a graph is the number of edges on the
path. The length of the path from a vertex to itself is 0.

� A simple path is a path such that all vertices are distinct, except
that the first and last may be the same.

� A cycle in a graph is a path w1, w2, w3, …, wn , w ∈ V such that:

� there are at least two vertices on the path

� w1 = wn (the path starts and ends on the same vertex)

� if any part of the path contains the subpath wi, wj, wi, then each of

the edges in the subpath is distinct (i. e., no backtracking along the

same edge)

� A simple cycle is one in which the path is simple.

� A directed graph with no cycles is called a directed acyclic
graph, often abbreviated as DAG

Paths in Graphs (2)

� How many simple paths from 1 to 4 and what

are their lengths?

1

52

3 4

2

1

3 4

5

8/3/2007 UMBC CMSC 341 Graphs 12

Connectedness in Graphs

� An undirected graph is connected if there is a path from
every vertex to every other vertex.

� A directed graph is strongly connected if there is a path
from every vertex to every other vertex.

� A directed graph is weakly connected if there would be

a path from every vertex to every other vertex,
disregarding the direction of the edges.

� A complete graph is one in which there is an edge
between every pair of vertices.

� A connected component of a graph is any maximal
connected subgraph. Connected components are

sometimes simply called components.

8/3/2007 UMBC CMSC 341 Graphs 13

Disjoint Sets and Graphs

� Disjoint sets can be used to determine connected
components of an undirected graph.

� For each edge, place its two vertices (u and v) in the

same set -- i.e. union(u, v)

� When all edges have been examined, the forest of sets

will represent the connected components.

� Two vertices, x, y, are connected if and only if
find(x) = find(y)

8/3/2007 UMBC CMSC 341 Graphs 14

Undirected Graph/Disjoint Set Example

Sets representing connected components
{ 1, 2, 3, 4, 5 }

{ 6 }

{ 7, 8, 9 }

7

6

9

8
2

1

3 4

5

8/3/2007 UMBC CMSC 341 Graphs 15

DiGraph / Strongly Connected

Components
a gb

hd fc

ije

8/3/2007 UMBC CMSC 341 Graphs 16

A Graph ADT

� Has some data elements

� Vertices and Edges

� Has some operations
� getDegree(u) -- Returns the degree of vertex u

(outdegree of vertex u in directed graph)

� getAdjacent(u) -- Returns a list of the vertices
adjacent to vertex u (list of vertices that u points
to for a directed graph)

� isAdjacentTo(u, v) -- Returns TRUE if vertex v is
adjacent to vertex u, FALSE otherwise.

� Has some associated algorithms to be
discussed.

8/3/2007 UMBC CMSC 341 Graphs 17

Adjacency Matrix Implementation

� Uses array of size |V| × |V| where each entry (i ,j) is
boolean

� TRUE if there is an edge from vertex i to vertex j

� FALSE otherwise

� store weights when edges are weighted

� Very simple, but large space requirement = O(|V|2)

� Appropriate if the graph is dense.

� Otherwise, most of the entries in the table are FALSE.

� For example, if a graph is used to represent a street
map like Manhattan in which most streets run E/W or
N/S, each intersection is attached to only 4 streets and
|E| < 4*|V|. If there are 3000 intersections, the table has
9,000,000 entries of which only 12,000 are TRUE.

8/3/2007 UMBC CMSC 341 Graphs 18

Undirected Graph / Adjacency Matrix

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 0

3 0 1 0 1 0

4 0 1 1 0 1

5 1 0 0 1 0

2

1

3 4

5

8/3/2007 UMBC CMSC 341 Graphs 19

Directed Graph / Adjacency Matrix

1 2 3 4 5

1 0 1 0 0 0

2 0 0 0 1 0

3 0 1 0 0 0

4 0 0 1 0 1

5 1 0 0 1 0

1

52

3 4

8/3/2007 UMBC CMSC 341 Graphs 20

Weighted, Directed Graph / Adjacency
Matrix

1 2 3 4 5

1 0 2 0 0 0

2 0 0 0 6 0

3 0 7 0 0 0

4 0 0 3 0 2

5 8 0 0 5 0

52

3 4

8

1

2

6

7

3

5

2

8/3/2007 UMBC CMSC 341 Graphs 21

Adjacency Matrix Performance

� Storage requirement:
O(|V|2)

� Performance:

getDegree (u)

isAdjacentTo(u, v)

getAdjacent(u)

8/3/2007 UMBC CMSC 341 Graphs 22

Adjacency List Implementation

� If the graph is sparse, then keeping a list of adjacent
vertices for each vertex saves space. Adjacency

Lists are the commonly used representation. The

lists may be stored in a data structure or in the Vertex
object itself.

� Vector of lists: A vector of lists of vertices. The i-
th element of the vector is a list, Li, of the vertices

adjacent to vi.

� If the graph is sparse, then the space requirement is

O(|E| + |V|), “linear in the size of the graph”

� If the graph is dense, then the space requirement is

O(|V|2)

8/3/2007 UMBC CMSC 341 Graphs 23

Vector of Lists

52

3 4

8

1

2

6
7

3

5

2

2
4

3 5

1

2

3

4

5 1 4

2

8/3/2007 UMBC CMSC 341 Graphs 24

Adjacency List Performance

� Storage requirement:

� Performance:

getDegree(u)

isAdjacentTo(u, v)

getAdjacent(u)

8/3/2007 UMBC CMSC 341 Graphs 25

Graph Traversals

� Like trees, graphs can be traversed breadth-

first or depth-first.

� Use stack (or recursion) for depth-first traversal

� Use queue for breadth-first traversal

� Unlike trees, we need to specifically guard

against repeating a path from a cycle. Mark

each vertex as “visited” when we encounter it

and do not consider visited vertices more

than once.

8/3/2007 UMBC CMSC 341 Graphs 26

Breadth-First Traversal

void bfs()

{

Queue<Vertex> q;

Vertex u, w;

for all v in V, d[v] = ∞ // mark each vertex unvisited

q.enqueue(startvertex); // start with any vertex

d[startvertex] = 0; // mark visited

while (!q.isEmpty()) {

u = q.dequeue();

for each Vertex w adjacent to u {

if (d[w] == ∞) { // w not marked as visited

d[w] = d[u]+1; // mark visited

path[w] = u; // where we came from

q.enqueue(w);

}

}

}

}

8/3/2007 UMBC CMSC 341 Graphs 27

Breadth-First Example

v1

v2

v4

v3

v5

∞

uq

∞

∞

∞

∞

v1

0

1v1

1v1

v2

v3

2v2

v4

v1 v2 v3 v4

BFS Traversal

8/3/2007 UMBC CMSC 341 Graphs 28

Unweighted Shortest Path Problem

� Unweighted shortest-path problem: Given as input
an unweighted graph, G = (V, E), and a
distinguished starting vertex, s, find the shortest

unweighted path from s to every other vertex in G.

� After running BFS algorithm with s as starting
vertex, the length of the shortest path length from s

to i is given by d[i]. If d[i] = ∞ , then there is no path
from s to i. The path from s to i is given by traversing

path[] backwards from i back to s.

8/3/2007 UMBC CMSC 341 Graphs 29

Recursive Depth First Traversal

void dfs() {

for (each v ∈ V)

dfs(v)

}

void dfs(Vertex v)

{

if (!v.visited)

{

v.visited = true;

for each Vertex w adjacent to v)

if (!w.visited)

dfs(w)

}

}

8/3/2007 UMBC CMSC 341 Graphs 30

DFS with explicit stack

void dfs()

{

Stack<Vertex> s;

Vertex u, w;

s.push(startvertex);

startvertex.visited = true;

while (!s.isEmpty()) {

u = s.pop();

for each Vertex w adjacent to u {

if (!w.visited) {

w.visited = true;

s.push(w);

}

}

}

8/3/2007 UMBC CMSC 341 Graphs 31

DFS Example

v1

v2

v4

v3

v5

s v1v2

v3

uv4

v1 v3 v2 v4

DFS Traversal

8/3/2007 UMBC CMSC 341 Graphs 32

Traversal Performance

� What is the performance of DF and BF

traversal?

� Each vertex appears in the stack or queue

exactly once in the worst case. Therefore,

the traversals are at least O(|V|).

However, at each vertex, we must find the

adjacent vertices. Therefore, df- and bf-

traversal performance depends on the
performance of the getAdjacent

operation.

8/3/2007 UMBC CMSC 341 Graphs 33

GetAdjacent

� Method 1: Look at every vertex (except u),

asking “are you adjacent to u?”
List<Vertex> L;

for each Vertex v except u

if (v.isAdjacentTo(u))

L.push_back(v);

� Assuming O(1) performance for
push_back and isAdjacentTo, then

getAdjacent has O(|V|) performance

and traversal performance is O(|V2|);

8/3/2007 UMBC CMSC 341 Graphs 34

GetAdjacent (2)

� Method 2: Look only at the edges which impinge on
u. Therefore, at each vertex, the number of vertices

to be looked at is D(u), the degree of the vertex

� This approach is O(D(u)). The traversal

performance is

since getAdjacent is done O(|V|) times.

� However, in a disconnected graph, we must still look
at every vertex, so the performance is O(|V| + |E|).

))((
1

vDO

V

i

i
=∑

=

O (|E|)

8/3/2007 UMBC CMSC 341 Graphs 35

Number of Edges
� Theorem: The number of edges in an undirected

graph G = (V,E) is O(|V|2)

� Proof: Suppose G is fully connected. Let p = |V|.

� Then we have the following situation:

vertex connected to

1 2,3,4,5,…, p

2 1,3,4,5,…, p

…

p 1,2,3,4,…,p-1

� There are p(p-1)/2 = O(|V|2) edges.

� So O(|E|) = O(|V|2).

8/3/2007 UMBC CMSC 341 Graphs 36

Weighted Shortest Path Problem

Single-source shortest-path problem:

Given as input a weighted graph, G = (V, E), and a

distinguished starting vertex, s, find the shortest
weighted path from s to every other vertex in G.

Use Dijkstra’s algorithm

– Keep tentative distance for each vertex giving

shortest path length using vertices visited so far.

– Record vertex visited before this vertex (to allow
printing of path).

– At each step choose the vertex with smallest
distance among the unvisited vertices (greedy

algorithm).

8/3/2007 UMBC CMSC 341 Graphs 37

Dijkstra’s Algorithm

� The pseudo code for Dijkstra’s algorithm assumes the
following structure for a Vertex object

class Vertex

{

public List adj; //Adjacency list

public boolean known;

public DisType dist; //DistType is probably int

public Vertex path;

//Other fields and methods as needed

}

8/3/2007 UMBC CMSC 341 Graphs 38

Dijkstra’s Algorithm
void dijksra(Vertex start)

{

for each Vertex v in V {

v.dist = Integer.MAX_VALUE;

v.known = false;

v.path = null;

}

start.distance = 0;

while there are unknown vertices {

v = unknown vertex with smallest distance

v.known = true;

for each Vertex w adjacent to v

if (!w.known)

if (v.dist + weight(v, w)< w.distance){

decrease(w.dist to v.dist+weight(v, w))

w.path = v;

}

}

}

8/3/2007 UMBC CMSC 341 Graphs 39

Dijkstra Example

v1 v7v2

v8v4 v6v3

v9v10v5

1

3

4

31

1

2 7

3

4

1

2

5

6

8/3/2007 UMBC CMSC 341 Graphs 40

Correctness of Dijkstra’s Algorithm

� The algorithm is correct because of a property of
shortest paths:

� If Pk = v1, v2, ..., vj, vk, is a shortest path from v1 to vk,
then Pj = v1, v2, ..., vj, must be a shortest path from v1 to

vj. Otherwise Pk would not be as short as possible since

Pk extends Pj by just one edge (from vj to vk)

� Also, Pj must be shorter than Pk (assuming that all

edges have positive weights). So the algorithm must
have found Pj on an earlier iteration than when it found

Pk.

� i.e. Shortest paths can be found by extending earlier

known shortest paths by single edges, which is what the

algorithm does.

8/3/2007 UMBC CMSC 341 Graphs 41

Running Time of Dijkstra’s Algorithm

� The running time depends on how the vertices are manipulated.

� The main ‘while’ loop runs O(|V|) time (once per vertex)

� Finding the “unknown vertex with smallest distance” (inside the
while loop) can be a simple linear scan of the vertices and so is also
O(|V|). With this method the total running time is O (|V|2). This is
acceptable (and perhaps optimal) if the graph is dense (|E| = O (|V|2

)) since it runs in linear time on the number of edges.

� If the graph is sparse, (|E| = O (|V|)), we can use a priority queue
to select the unknown vertex with smallest distance, using the
deleteMin operation (O(lg |V|)). We must also decrease the path
lengths of some unknown vertices, which is also O(lg|V|). The
deleteMin operation is performed for every vertex, and the
“decrease path length” is performed for every edge, so the running
time is
O(|E| lg|V| + |V|lg|V|) = O((|V|+|E|) lg|V|) = O(|E| lg|V|) if all vertices
are reachable from the starting vertex

8/3/2007 UMBC CMSC 341 Graphs 42

Dijkstra and Negative Edges

� Note in the previous discussion, we made the
assumption that all edges have positive weight. If any
edge has a negative weight, then Dijkstra’s algorithm
fails. Why is this so?

� Suppose a vertex, u, is marked as “known”. This means
that the shortest path from the starting vertex, s, to u has
been found.

� However, it’s possible that there is negatively weighted
edge from an unknown vertex, v, back to u. In that case,
taking the path from s to v to u is actually shorter than
the path from s to u without going through v.

� Other algorithms exist that handle edges with negative
weights for weighted shortest-path problem.

8/3/2007 UMBC CMSC 341 Graphs 43

Directed Acyclic Graphs

� A directed acyclic graph is a directed graph
with no cycles.

� A strict partial order R on a set S is a binary
relation such that
� for all a∈S, aRa is false (irreflexive property)

� for all a,b,c ∈S, if aRb and bRc then aRc is true
(transitive property)

� To represent a partial order with a DAG:
� represent each member of S as a vertex

� for each pair of vertices (a,b), insert an edge from
a to b if and only if aRb

8/3/2007 UMBC CMSC 341 Graphs 44

More Definitions

� Vertex i is a predecessor of vertex j if and only if there is
a path from i to j.

� Vertex i is an immediate predecessor of vertex j if and
only if (i, j) is an edge in the graph.

� Vertex j is a successor of vertex i if and only if there is a

path from i to j.

� Vertex j is an immediate successor of vertex i if and

only if (i, j) is an edge in the graph.

� The indegree of a vertex, v, is the number of edges (u,

v), i.e. the number of edges that come “into” v.

8/3/2007 UMBC CMSC 341 Graphs 45

Topological Ordering
� A topological ordering of the vertices of a

DAG G = (V,E) is a linear ordering such that,

for vertices i, j ∈V, if i is a predecessor of j,
then i precedes j in the linear order,

i.e. if there is a path from vi to vj, then vi

comes before vj in the linear order

8/3/2007 UMBC CMSC 341 Graphs 46

Topological Sort

8/3/2007 UMBC CMSC 341 Graphs 47

TopSort Example

1

6 7

2

8 9 10

3 4 5

8/3/2007 UMBC CMSC 341 Graphs 48

Running Time of TopSort

1. At most, each vertex is enqueued just once, so

there are O(|V|) constant time queue

operations.

2. The body of the for loop is executed at most

once per edges = O(|E|)

3. The initialization is proportional to the size of

the graph if adjacency lists are used = O(|E| +

|V|)

4. The total running time is therefore O (|E| + |V|)

