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Basic Graph Definitions

� A graph G = (V,E) consists of a finite set 

of vertices, V, and a finite set of edges, E. 

� Each edge is a pair (v,w) where v, w ∈ V.

� V and E are sets, so each vertex v ∈ V is 

unique, and each edge e ∈ E is unique.

� Edges are sometimes called arcs or lines.

� Vertices are sometimes called nodes or 

points.
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Graph Applications

� Graphs can  be used to model a wide range 

of applications including

� Intersections and streets within a city

� Roads/trains/airline routes connecting 

cities/countries

� Computer networks

� Electronic circuits
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Basic Graph Definitions (2)

� A directed graph is a graph in which the 
edges are ordered pairs. 
That is, (u,v) ≠ (v,u), u, v ∈ V. 
Directed graphs are sometimes called 
digraphs.

� An undirected graph is a graph in which the 
edges are unordered pairs. 
That is, (u,v) = (v,u).

� A sparse graph is one with “few” edges.
That is |E| = O( |V| )

� A dense graph is one with “many” edges.
That is |E| = O( |V|2 )
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Undirected Graph

� All edges are two-way.  Edges are unordered 

pairs.

� V = { 1, 2 ,3, 4, 5}

� E = { (1,2), (2, 3), (3, 4), (2, 4), (4, 5), (5, 1) }
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Directed Graph
1

52

3 4

� All edges are “one-way” as indicated by the arrows. 

Edges are ordered pairs.

� V = { 1, 2, 3, 4, 5}

� E = { (1, 2), (2, 4), (3, 2), (4, 3), (4, 5), (5, 4), (5, 1) }
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A Single Graph with Multiple 
Components
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Basic Graph Definitions (3)

� Vertex w is adjacent to vertex v if and only if (v, w) 

∈ E. 

� For undirected graphs, with edge (v, w), and hence 
also (w, v), w is adjacent to v and v is adjacent to 
w.

� An edge may also have:

� weight or cost -- an associated value

� label -- a unique name

� The degree of a vertex, v, is the number of 

vertices adjacent to v. Degree is also called 
valence.



Basic Graph Definitions (4)

� For directed graphs vertex w is adjacent to vertex v if 

and only if (v, w) ∈ E.

� Indegree of a vertex w is the number of edges (v,w).

� OutDegree of a vertex w is the number of edges(w,v).
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Paths in Graphs
� A path in a graph is a sequence of vertices w1, w2, w3, …, wn

such that (wi, wi+1) ∈ E for 1 ≤ i < n.

� The length of a path in a graph is the number of edges on the 
path. The length of the path from a vertex to itself is 0.

� A simple path is a path such that all vertices are distinct, except 
that the first and last may be the same.

� A cycle in a graph is a path w1, w2, w3, …, wn , w ∈ V such that:

� there are at least two vertices on the path

� w1 = wn (the path starts and ends on the same vertex)

� if any part of the path contains the subpath wi, wj, wi, then each of 

the edges in the subpath is distinct (i. e., no backtracking along the 

same edge)

� A simple cycle is one in which the path is simple.

� A directed graph with no cycles is called a directed acyclic
graph, often abbreviated as DAG



Paths in Graphs (2)

� How many simple paths from 1 to 4 and what 

are their lengths?
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Connectedness in Graphs

� An undirected graph is connected if there is a path from 
every vertex to every other vertex.

� A directed graph is strongly connected if there is a path 
from every vertex to every other vertex.

� A directed graph is weakly connected if there would be 

a path from every vertex to every other vertex, 
disregarding the direction of the edges.

� A complete graph is one in which there is an edge 
between every pair of vertices.

� A connected component of a graph is any maximal 
connected subgraph. Connected components are 

sometimes simply called components.
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Disjoint Sets and Graphs

� Disjoint sets can be used to determine connected 
components of an undirected graph.

� For each edge, place its two vertices (u and v) in the 

same set -- i.e. union( u, v )

� When all edges have been examined, the forest of sets 

will represent the connected components.

� Two vertices, x, y,  are connected if and only if 
find( x ) = find( y )
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Undirected Graph/Disjoint Set Example

Sets representing connected components
{ 1, 2, 3, 4, 5 }

{ 6 }

{ 7, 8, 9 }
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DiGraph / Strongly Connected 

Components
a gb

hd fc

ije
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A Graph ADT

� Has some data elements

� Vertices and Edges

� Has some operations
� getDegree( u ) -- Returns the degree of vertex u 

(outdegree of vertex u in directed graph)

� getAdjacent( u ) -- Returns a list of the vertices 
adjacent to vertex u (list of vertices that u points 
to for a directed graph)

� isAdjacentTo( u, v )  -- Returns TRUE if vertex v is 
adjacent to vertex u, FALSE otherwise.

� Has some associated algorithms to be 
discussed.
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Adjacency Matrix Implementation

� Uses array of size |V| × |V| where each entry (i ,j) is 
boolean

� TRUE if there is an edge from vertex i to vertex j

� FALSE otherwise

� store weights when edges are weighted

� Very simple, but large space requirement = O(|V|2)

� Appropriate if the graph is dense.

� Otherwise, most of the entries in the table are FALSE.

� For example, if  a graph is used to represent a street 
map like Manhattan in which most streets run E/W or 
N/S, each intersection is attached to only 4 streets and 
|E|  < 4*|V|.  If there are 3000 intersections, the table has 
9,000,000 entries of which only 12,000 are TRUE.
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Undirected Graph / Adjacency Matrix

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 0

3 0 1 0 1 0

4 0 1 1 0 1

5 1 0 0 1 0
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Directed Graph / Adjacency Matrix

1 2 3 4 5

1 0 1 0 0 0

2 0 0 0 1 0

3 0 1 0 0 0

4 0 0 1 0 1

5 1 0 0 1 0

1
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Weighted, Directed Graph / Adjacency 
Matrix

1 2 3 4 5

1 0 2 0 0 0

2 0 0 0 6 0

3 0 7 0 0 0

4 0 0 3 0 2

5 8 0 0 5 0
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Adjacency Matrix Performance

� Storage requirement: 
O( |V|2 )

� Performance:

getDegree ( u )

isAdjacentTo( u, v )

getAdjacent( u )
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Adjacency List Implementation

� If the graph is sparse, then keeping a list of adjacent 
vertices for each vertex saves space.  Adjacency 

Lists are the commonly used representation.  The 

lists may be stored in a data structure or in the Vertex 
object itself.

� Vector of lists: A vector of lists of vertices.  The i-
th element of the vector is a list, Li, of the vertices 

adjacent to vi.

� If the graph is sparse, then the space requirement is 

O( |E| + |V| ), “linear in the size of the graph”

� If the graph is dense, then the space requirement is 

O( |V|2 )
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Vector of Lists
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Adjacency List Performance

� Storage requirement:

� Performance:

getDegree( u )

isAdjacentTo( u, v )

getAdjacent( u )
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Graph Traversals

� Like trees, graphs can be traversed breadth-

first or depth-first.

� Use stack (or recursion) for depth-first traversal

� Use queue for breadth-first traversal

� Unlike trees, we need to specifically guard 

against repeating a path from a cycle. Mark 

each vertex as “visited” when we encounter it 

and do not consider visited vertices more 

than once.
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Breadth-First Traversal

void bfs()

{

Queue<Vertex> q;

Vertex u, w;

for all v in V, d[v] = ∞ // mark each vertex unvisited

q.enqueue(startvertex); // start with any vertex

d[startvertex] = 0; // mark visited

while ( !q.isEmpty() ) {

u = q.dequeue( );

for each Vertex w adjacent to u {

if (d[w] == ∞) { // w not marked as visited

d[w] = d[u]+1; // mark visited

path[w] = u;   // where we came from

q.enqueue(w);

}

}

}

}
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Breadth-First Example

v1

v2

v4

v3

v5

∞

uq

∞

∞

∞

∞

v1

0

1v1

1v1

v2

v3

2v2

v4

v1 v2 v3 v4

BFS Traversal
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Unweighted Shortest Path Problem

� Unweighted shortest-path problem: Given as input 
an unweighted graph, G = ( V, E ), and a 
distinguished starting vertex, s, find the shortest 

unweighted path from s to every other vertex in G. 

� After running BFS algorithm with s as starting 
vertex, the length of the shortest path length from s 

to i is given by d[i].  If d[i] = ∞ , then there is no path 
from s to i. The path from s to i is given by traversing 

path[] backwards from i back to s.
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Recursive Depth First Traversal

void dfs() {

for (each v ∈ V)

dfs(v)

}

void dfs(Vertex v) 

{

if (!v.visited)

{

v.visited = true;

for each Vertex w adjacent to v)

if ( !w.visited )

dfs(w)

}

}
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DFS with explicit stack

void dfs()

{

Stack<Vertex> s;

Vertex u, w;

s.push(startvertex);

startvertex.visited = true;

while ( !s.isEmpty() ) {

u = s.pop();

for each Vertex w adjacent to u {

if (!w.visited) {

w.visited = true;

s.push(w);

}

}

}
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DFS Example

v1

v2

v4

v3

v5

s v1v2

v3

uv4

v1 v3 v2 v4

DFS Traversal
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Traversal Performance

� What is the performance of DF and BF 

traversal?

� Each vertex appears in the stack or queue 

exactly once in the worst case. Therefore, 

the traversals are at least O( |V| ). 

However, at each vertex, we must find the 

adjacent vertices. Therefore, df- and bf-

traversal performance depends on the 
performance of the getAdjacent

operation.



8/3/2007 UMBC CMSC 341 Graphs 33

GetAdjacent

� Method 1:  Look at every vertex (except u), 

asking “are you adjacent to u?”
List<Vertex> L;

for each Vertex v except u

if (v.isAdjacentTo(u))

L.push_back(v);

� Assuming O(1) performance for 
push_back and  isAdjacentTo, then 

getAdjacent has O( |V| ) performance 

and traversal performance is O( |V2| );
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GetAdjacent (2)

� Method 2:  Look only at the edges which impinge on 
u. Therefore, at each vertex, the number of vertices 

to be looked at is D(u), the degree of the vertex

� This approach is O( D( u ) ). The traversal 

performance is

since getAdjacent is done O( |V| ) times.

� However, in a disconnected graph, we must still look 
at every vertex, so the performance is  O( |V| + |E| ).

))((
1

vDO

V

i

i
=∑

=

O ( |E| )
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Number of Edges
� Theorem: The number of edges in an undirected 

graph  G = (V,E ) is O(|V|2)

� Proof: Suppose G is fully connected. Let p = |V|. 

� Then we have the following situation:

vertex connected to

1 2,3,4,5,…, p

2 1,3,4,5,…, p

…

p 1,2,3,4,…,p-1

� There are p(p-1)/2 = O(|V|2) edges.

� So O(|E|) = O(|V|2).
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Weighted Shortest Path Problem

Single-source shortest-path problem: 

Given as input a weighted graph, G = ( V, E ), and a 

distinguished starting vertex, s, find the shortest 
weighted path from s to every other vertex in G.

Use Dijkstra’s algorithm

– Keep tentative distance for each vertex giving 

shortest path length using vertices visited so far.

– Record vertex visited before this vertex (to allow 
printing of path).

– At each step choose the vertex with smallest 
distance among the unvisited vertices (greedy 

algorithm).
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Dijkstra’s Algorithm

� The pseudo code for Dijkstra’s algorithm assumes the 
following structure for a Vertex object

class Vertex

{

public List adj; //Adjacency list

public boolean known;

public DisType dist; //DistType is probably int

public Vertex path;

//Other fields and methods as needed

}
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Dijkstra’s Algorithm
void dijksra(Vertex start)

{

for each Vertex v in V {

v.dist = Integer.MAX_VALUE; 

v.known = false; 

v.path = null;

}

start.distance = 0;

while there are unknown vertices {

v = unknown vertex with smallest distance

v.known = true;

for each Vertex w adjacent to v

if (!w.known)

if (v.dist + weight(v, w)< w.distance){

decrease(w.dist to v.dist+weight(v, w))

w.path = v;

}

}

}
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Dijkstra Example

v1 v7v2

v8v4 v6v3

v9v10v5

1

3

4
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Correctness of Dijkstra’s Algorithm

� The algorithm is correct because of a property of 
shortest paths: 

� If Pk = v1, v2, ..., vj, vk, is a shortest path from v1 to vk,  
then Pj = v1, v2, ..., vj, must be a shortest path from v1 to 

vj. Otherwise Pk would not be as short as possible since 

Pk extends Pj by just one edge (from vj to vk)

� Also, Pj must be shorter than Pk (assuming that all 

edges have positive weights). So the algorithm must 
have found Pj on an earlier iteration than when it found 

Pk. 

� i.e. Shortest paths can be found by extending earlier 

known shortest paths by single edges, which is what the 

algorithm does. 
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Running Time of Dijkstra’s Algorithm

� The running time depends on how the vertices are manipulated.

� The main ‘while’ loop runs O( |V| ) time (once per vertex)

� Finding the “unknown vertex with smallest distance” (inside the 
while loop) can be a simple linear scan of the vertices and so is also 
O( |V| ).  With this method the total running time is O (|V|2 ).  This is 
acceptable (and perhaps optimal) if the graph is dense ( |E| = O (|V|2

) ) since it runs in linear time on the number of edges.

� If the graph is sparse, ( |E| = O (|V| ) ), we can use a priority queue 
to select the unknown vertex with smallest distance, using the 
deleteMin operation (O( lg |V| )).  We must also decrease the path 
lengths of some unknown vertices, which is also O( lg|V| ). The 
deleteMin operation is performed for every vertex, and the 
“decrease path length” is performed for every edge, so the running 
time is 
O( |E| lg|V| + |V|lg|V|) = O( (|V|+|E|) lg|V|) = O(|E| lg|V|) if all vertices 
are reachable from the starting vertex
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Dijkstra and Negative Edges

� Note in the previous discussion, we made the 
assumption that all edges have positive weight.  If any 
edge has a negative weight, then Dijkstra’s algorithm 
fails.  Why is this so?

� Suppose a vertex, u, is marked as “known”.  This means 
that the shortest path from the starting vertex, s, to u has 
been found.

� However, it’s possible that there is negatively weighted 
edge from an unknown vertex, v, back to u.  In that case, 
taking the path from s to v to u is actually shorter than 
the path from s to u without going through v.

� Other algorithms exist that handle edges with negative 
weights for weighted shortest-path problem.
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Directed Acyclic Graphs

� A directed acyclic graph is a directed graph 
with no cycles.

� A strict partial order R on a set S is a binary 
relation such that 
� for all a∈S, aRa is false (irreflexive property)

� for all a,b,c ∈S, if aRb and bRc then aRc is true 
(transitive property)

� To represent a partial order with a DAG:
� represent each member of S as a vertex

� for each pair of vertices (a,b), insert an edge from 
a to b if and only if aRb
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More Definitions

� Vertex i is a predecessor of vertex j if and only if there is 
a path from i to j.

� Vertex i is an immediate predecessor of vertex j if and 
only if ( i, j ) is an edge in the graph.

� Vertex j is a successor of vertex i if and only if there is a 

path from i to j.

� Vertex j is an immediate successor of vertex i if and 

only if ( i, j ) is an edge in the graph.

� The indegree of a vertex, v, is the number of edges (u, 

v),  i.e. the number of edges that come “into” v.
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Topological Ordering
� A topological ordering of the vertices of a 

DAG G = (V,E) is a linear ordering such that, 

for vertices i, j ∈V, if i is a predecessor of j, 
then i precedes j in the linear order,

i.e. if there is a path from vi to vj, then vi

comes before vj in the linear order
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Topological Sort



8/3/2007 UMBC CMSC 341 Graphs 47

TopSort Example

1

6 7

2

8 9 10

3 4 5
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Running Time of TopSort

1. At most, each vertex is enqueued just once, so 

there are O(|V| ) constant time queue 

operations.

2. The body of the for loop is executed at most 

once per edges = O( |E| )

3. The initialization is proportional to the size of 

the graph if adjacency lists are used  = O( |E| + 

|V| )

4. The total running time is therefore O ( |E| + |V| )


