

Graphs

Basic Graph Definitions

- A <u>graph</u> G = (V,E) consists of a finite set of <u>vertices</u>, V, and a finite set of <u>edges</u>, E.
- Each edge is a pair (v,w) where v, $w \in V$.
 - □ V and E are sets, so each vertex $v \in V$ is unique, and each edge $e \in E$ is unique.
 - Edges are sometimes called <u>arcs</u> or <u>lines</u>.
 - Vertices are sometimes called <u>nodes</u> or <u>points</u>.

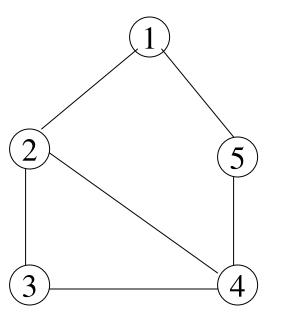
Graph Applications

- Graphs can be used to model a wide range of applications including
- Intersections and streets within a city
- Roads/trains/airline routes connecting cities/countries
- Computer networks
- Electronic circuits

Basic Graph Definitions (2)

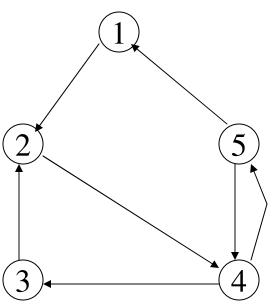
- A <u>directed graph</u> is a graph in which the edges are ordered pairs. That is, (u,v) ≠ (v,u), u, v ∈ V.
 Directed graphs are sometimes called <u>digraphs</u>.
- An <u>undirected graph</u> is a graph in which the edges are unordered pairs.
 That is, (u,v) = (v,u).
- A <u>sparse graph</u> is one with "few" edges.
 That is |E| = O(|V|)
- A <u>dense graph</u> is one with "many" edges.
 That is |E| = O(|V|²)

Undirected Graph



All edges are two-way. Edges are unordered pairs.

Directed Graph

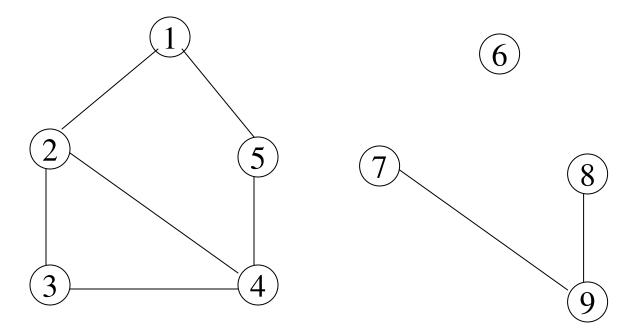


All edges are "one-way" as indicated by the arrows.
 Edges are ordered pairs.

 $V = \{ 1, 2, 3, 4, 5 \}$

 $\blacksquare E = \{ (1, 2), (2, 4), (3, 2), (4, 3), (4, 5), (5, 4), (5, 1) \}$

A Single Graph with Multiple Components

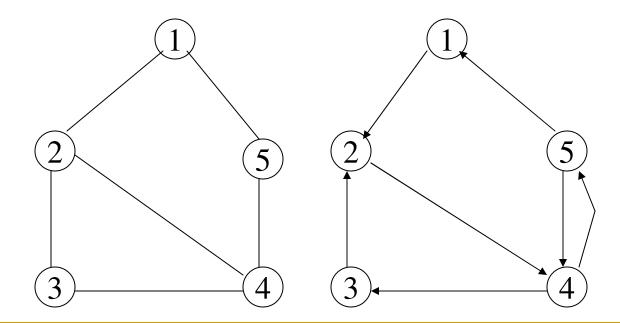


Basic Graph Definitions (3)

- Vertex w is <u>adjacent to</u> vertex v if and only if (v, w)
 ∈ E.
- For undirected graphs, with edge (v, w), and hence also (w, v), w is adjacent to v and v is adjacent to w.
- An edge may also have:
 - <u>weight</u> or <u>cost</u> -- an associated value
 - In <u>Iabel</u> -- a unique name
- The <u>degree</u> of a vertex, v, is the number of vertices adjacent to v. Degree is also called valence.

Basic Graph Definitions (4)

- For directed graphs vertex w is <u>adjacent to</u> vertex v if and only if (v, w) ∈ E.
- Indegree of a vertex w is the number of edges (v,w).
- OutDegree of a vertex w is the number of edges(w,v).

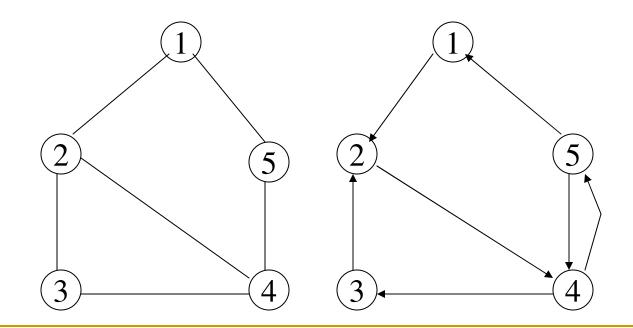


Paths in Graphs

- A <u>*path*</u> in a graph is a sequence of vertices $w_1, w_2, w_3, ..., w_n$ such that $(w_i, w_{i+1}) \in E$ for $1 \le i < n$.
- The <u>length</u> of a path in a graph is the <u>number of edges</u> on the path. The length of the path from a vertex to itself is 0.
- A <u>simple path</u> is a path such that all vertices are distinct, except that the first and last may be the same.
- A <u>cycle</u> in a graph is a path $w_1, w_2, w_3, ..., w_n$, $w \in V$ such that:
 - there are at least two vertices on the path
 - $w_1 = w_n$ (the path starts and ends on the same vertex)
 - if any part of the path contains the subpath w_i, w_j, w_i, then each of the edges in the subpath is distinct (i. e., no backtracking along the same edge)
- A *simple cycle* is one in which the path is simple.
- A directed graph with no cycles is called a <u>directed acyclic</u> <u>graph</u>, often abbreviated as DAG

Paths in Graphs (2)

How many simple paths from 1 to 4 and what are their lengths?



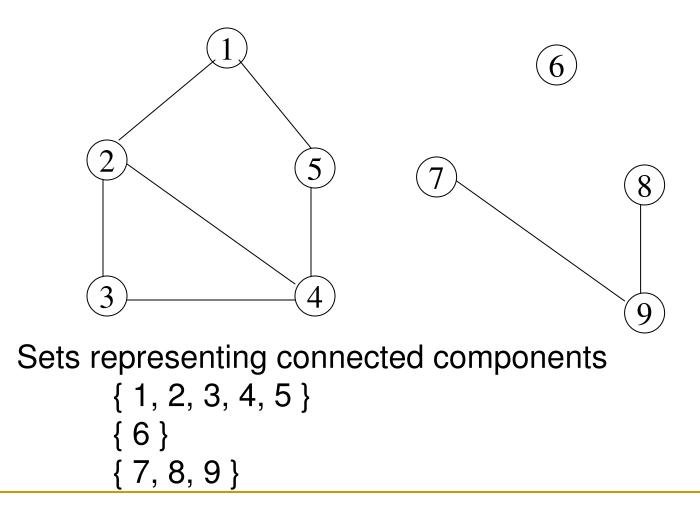
Connectedness in Graphs

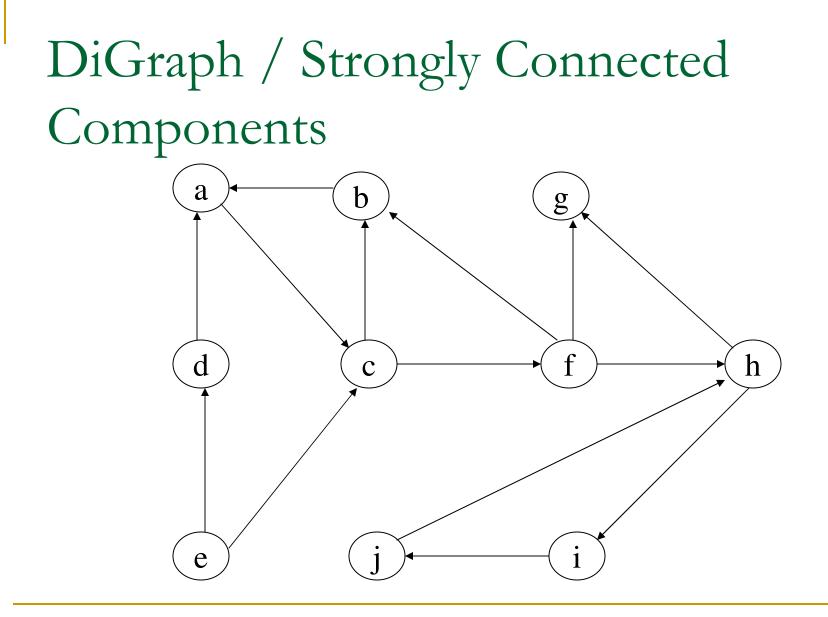
- An undirected graph is <u>connected</u> if there is a path from every vertex to every other vertex.
- A directed graph is <u>strongly connected</u> if there is a path from every vertex to every other vertex.
- A directed graph is <u>weakly connected</u> if there would be a path from every vertex to every other vertex, disregarding the direction of the edges.
- A <u>complete</u> graph is one in which there is an edge between every pair of vertices.
- A <u>connected component</u> of a graph is any maximal connected subgraph. Connected components are sometimes simply called <u>components</u>.

Disjoint Sets and Graphs

- Disjoint sets can be used to determine connected components of an undirected graph.
- For each edge, place its two vertices (u and v) in the same set -- i.e. union(u, v)
- When all edges have been examined, the forest of sets will represent the connected components.
- Two vertices, x, y, are connected if and only if find(x) = find(y)

Undirected Graph/Disjoint Set Example





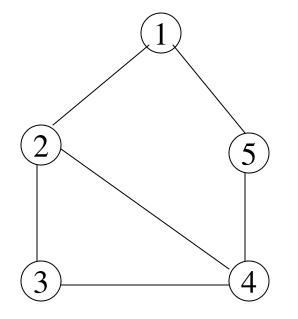
A Graph ADT

- Has some data elements
 - Vertices and Edges
- Has some operations
 - getDegree(u) -- Returns the degree of vertex u (outdegree of vertex u in directed graph)
 - getAdjacent(u) -- Returns a list of the vertices
 <u>adjacent to</u> vertex u (list of vertices that u points to for a directed graph)
 - isAdjacentTo(u, v) -- Returns TRUE if vertex v is adjacent to vertex u, FALSE otherwise.
- Has some associated algorithms to be discussed.

Adjacency Matrix Implementation

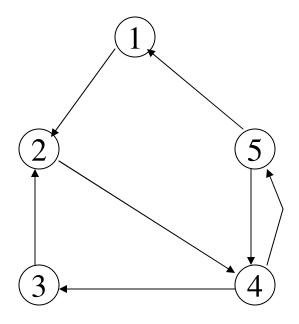
- Uses array of size $|\mathsf{V}|\times|\mathsf{V}|$ where each entry (i ,j) is boolean
 - TRUE if there is an edge from vertex i to vertex j
 - FALSE otherwise
 - store weights when edges are weighted
- Very simple, but large space requirement = $O(|V|^2)$
- Appropriate if the graph is dense.
- Otherwise, most of the entries in the table are FALSE.
- For example, if a graph is used to represent a street map like Manhattan in which most streets run E/W or N/S, each intersection is attached to only 4 streets and |E| < 4*|V|. If there are 3000 intersections, the table has 9,000,000 entries of which only 12,000 are TRUE.

Undirected Graph / Adjacency Matrix

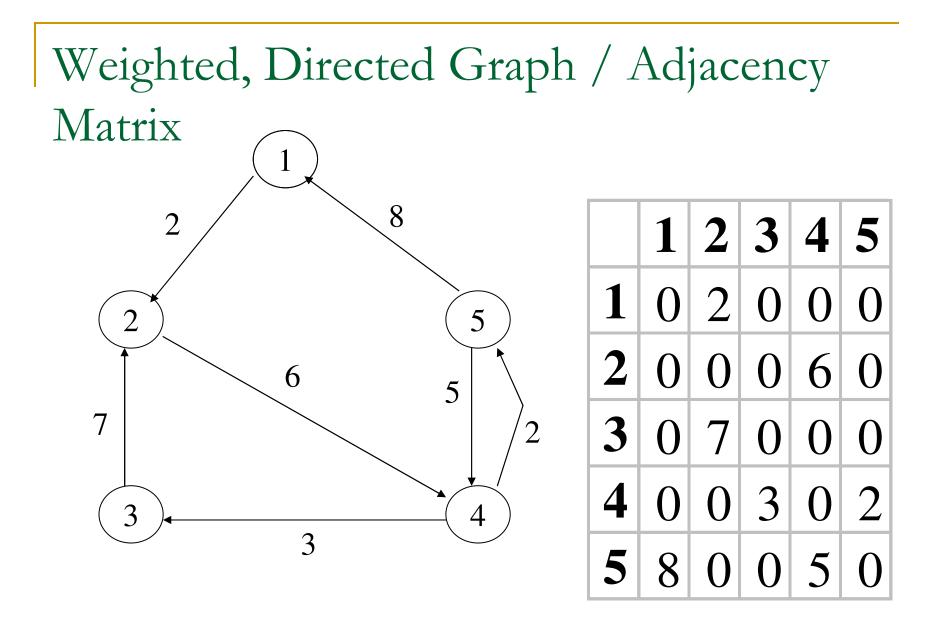


	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	0
3	0	1	0	1	0
4	0	1	1	0	1
5	1	0	0	1	0

Directed Graph / Adjacency Matrix



	1	2	3	4	5
1	0	1	0	0	0
2	0	0	0	1	0
3	0	1	0	0	0
4	0	0	1	0	1
5	1	0	0	1	0



Adjacency Matrix Performance

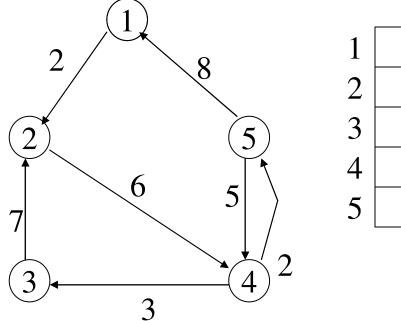
- Storage requirement:
 O(|V|²)
- Performance:

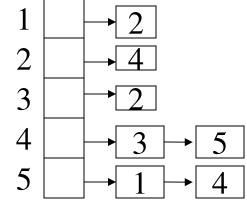
getDegree (u)	
isAdjacentTo(u, v)	
getAdjacent(u)	

Adjacency List Implementation

- If the graph is sparse, then keeping a list of adjacent vertices for each vertex saves space. Adjacency Lists are the commonly used representation. The lists may be stored in a data structure or in the Vertex object itself.
 - Vector of lists: A vector of lists of vertices. The ith element of the vector is a list, L_i, of the vertices adjacent to v_i.
- If the graph is sparse, then the space requirement is
 O(|E| + |V|), "linear in the size of the graph"
- If the graph is dense, then the space requirement is O(|V|²)

Vector of Lists





Adjacency List Performance

- Storage requirement:
- Performance:

getDegree(u)	
isAdjacentTo(u,v)	
getAdjacent(u)	

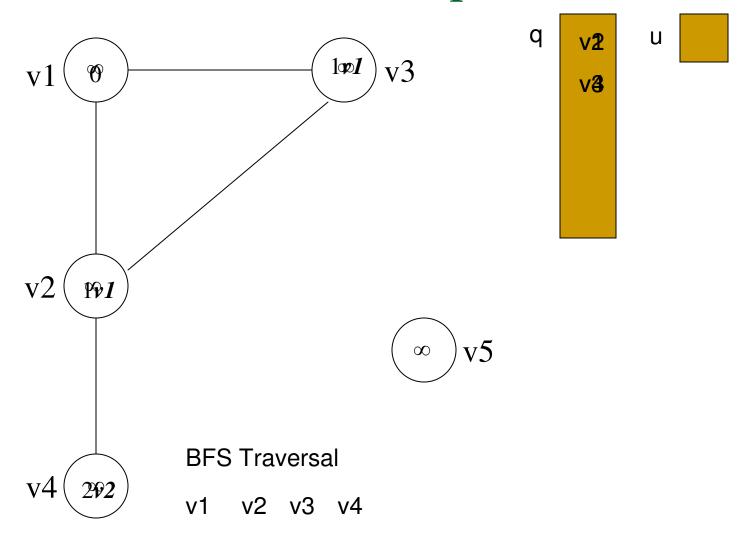
Graph Traversals

- Like trees, graphs can be traversed breadthfirst or depth-first.
 - Use stack (or recursion) for depth-first traversal
 - Use queue for breadth-first traversal
- Unlike trees, we need to specifically guard against repeating a path from a cycle. Mark each vertex as "visited" when we encounter it and do not consider visited vertices more than once.

Breadth-First Traversal

```
void bfs()
{
   Queue<Vertex> q;
   Vertex u, w;
   for all v in V, d[v] = \infty // mark each vertex unvisited
   q.enqueue(startvertex);
                                    // start with any vertex
   d[startvertex] = 0;
                                     // mark visited
   while ( !q.isEmpty() ) {
       u = q.dequeue();
       for each Vertex w adjacent to u {
               if (d[w] == \infty) { // w not marked as visited
                      d[w] = d[u]+1; // mark visited
                      path[w] = u; // where we came from
                      q.enqueue(w);
               }
}
```

Breadth-First Example



Unweighted Shortest Path Problem

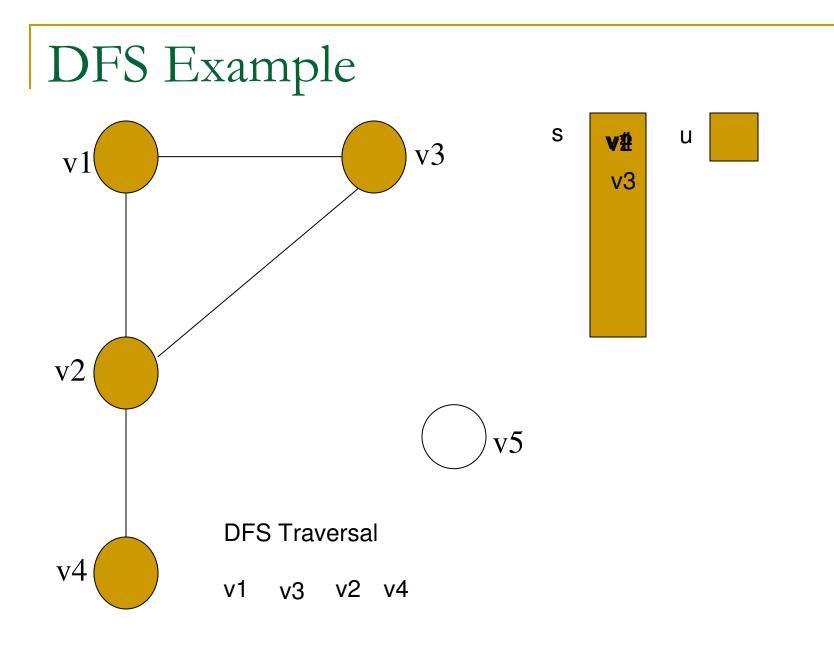
- Unweighted shortest-path problem: Given as input an unweighted graph, G = (V, E), and a distinguished starting vertex, s, find the shortest unweighted path from s to every other vertex in G.
- After running BFS algorithm with s as starting vertex, the length of the shortest path length from s to i is given by d[i]. If d[i] = ∞, then there is no path from s to i. The path from s to i is given by traversing path[] backwards from i back to s.

Recursive Depth First Traversal

```
void dfs() {
   for (each v \in V)
        dfs(v)
}
void dfs(Vertex v)
{
   if (!v.visited)
   {
        v.visited = true;
        for each Vertex w adjacent to v)
                if ( !w.visited )
                        dfs(w)
   }
}
```

DFS with explicit stack

```
void dfs()
{
   Stack<Vertex> s;
   Vertex u, w;
   s.push(startvertex);
   startvertex.visited = true;
   while ( !s.isEmpty() ) {
        u = s.pop();
        for each Vertex w adjacent to u {
                if (!w.visited) {
                       w.visited = true;
                        s.push(w);
        }
   }
}
```



Traversal Performance

- What is the performance of DF and BF traversal?
- Each vertex appears in the stack or queue exactly once in the worst case. Therefore, the traversals are at least O(|V|).
 However, at each vertex, we must find the adjacent vertices. Therefore, df- and bftraversal performance depends on the performance of the getAdjacent operation.

GetAdjacent

Method 1: Look at every vertex (except u), asking "are you adjacent to u?"

```
List<Vertex> L;
for each Vertex v except u
if (v.isAdjacentTo(u))
```

```
L.push_back(v);
```

Assuming O(1) performance for push_back and isAdjacentTo, then getAdjacent has O(|V|) performance and traversal performance is O(|V²|);

GetAdjacent (2)

- Method 2: Look only at the edges which impinge on u. Therefore, at each vertex, the number of vertices to be looked at is D(u), the degree of the vertex
- This approach is O(D(u)). The traversal performance is

$$O(\sum_{i=1}^{|V|} D(v_i)) = O(|E|)$$

since getAdjacent is done O(|V|) times.

 However, in a disconnected graph, we must still look at every vertex, so the performance is O(|V| + |E|).

- Number of Edges

 Theorem: The number of edges in an undirected graph G = (V, E) is $O(|V|^2)$
- Proof: Suppose G is fully connected. Let p = |V|.
- Then we have the following situation:

vertex	connected to		
1	2,3,4,5,, p		
2	1,3,4,5,, p		
р	1,2,3,4,,p-1		
• There are $p(p-1)/2 = O(V ^2)$ edges.			
• So $O(E) = O(V ^2)$.			

Weighted Shortest Path Problem

Single-source shortest-path problem:

Given as input a weighted graph, G = (V, E), and a distinguished starting vertex, s, find the shortest weighted path from s to every other vertex in G.

Use Dijkstra's algorithm

- Keep tentative distance for each vertex giving shortest path length using vertices visited so far.
- Record vertex visited before this vertex (to allow printing of path).
- At each step choose the vertex with smallest distance among the unvisited vertices (greedy algorithm).

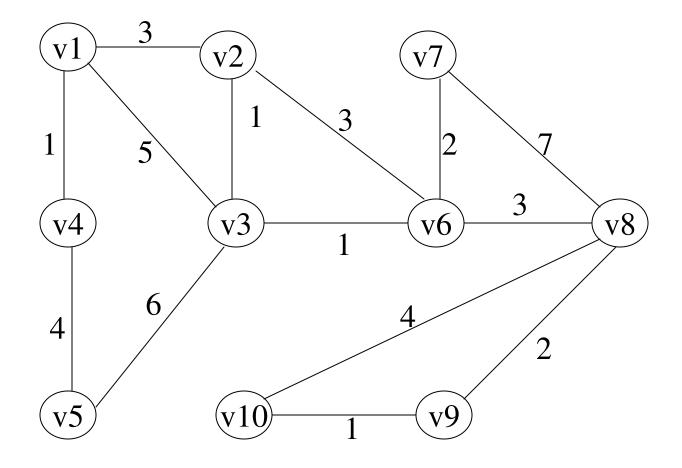
Dijkstra's Algorithm

 The pseudo code for Dijkstra's algorithm assumes the following structure for a Vertex object

```
class Vertex
{
   public List adj; //Adjacency list
   public boolean known;
   public DisType dist; //DistType is probably int
   public Vertex path;
   //Other fields and methods as needed
}
```

```
Dijkstra's Algorithm
void dijksra(Vertex start)
   for each Vertex v in V {
        v.dist = Integer.MAX_VALUE;
        v.known = false;
        v.path = null;
   }
   start.distance = 0;
   while there are unknown vertices {
        v = unknown vertex with smallest distance
        v.known = true;
        for each Vertex w adjacent to v
               if (!w.known)
                       if (v.dist + weight(v, w) < w.distance) {</pre>
                               decrease(w.dist to v.dist+weight(v, w))
                               w.path = v;
   }
```

Dijkstra Example



Correctness of Dijkstra's Algorithm

- The algorithm is correct because of a property of shortest paths:
- If $P_k = v_1, v_2, ..., v_j, v_k$, is a shortest path from v_1 to v_k , then $P_j = v_1, v_2, ..., v_j$, must be a shortest path from v_1 to v_j . Otherwise P_k would not be as short as possible since P_k extends P_j by just one edge (from v_j to v_k)
- Also, P_j must be shorter than P_k (assuming that all edges have positive weights). So the algorithm must have found P_j on an earlier iteration than when it found P_k.
- i.e. Shortest paths can be found by extending earlier known shortest paths by single edges, which is what the algorithm does.

Running Time of Dijkstra's Algorithm

- The running time depends on how the vertices are manipulated.
- The main 'while' loop runs O(|V|) time (once per vertex)
- Finding the "unknown vertex with smallest distance" (inside the while loop) can be a simple linear scan of the vertices and so is also O(|V|). With this method the total running time is O (|V|²). This is acceptable (and perhaps optimal) if the graph is dense (|E| = O (|V|²)) since it runs in linear time on the number of edges.
- If the graph is sparse, (|E| = O (|V|)), we can use a priority queue to select the unknown vertex with smallest distance, using the deleteMin operation (O(lg |V|)). We must also decrease the path lengths of some unknown vertices, which is also O(lg|V|). The deleteMin operation is performed for every vertex, and the "decrease path length" is performed for every edge, so the running time is

O(|E| |g|V| + |V||g|V|) = O((|V|+|E|) |g|V|) = O(|E| |g|V|) if all vertices are reachable from the starting vertex

Dijkstra and Negative Edges

- Note in the previous discussion, we made the assumption that all edges have positive weight. If any edge has a negative weight, then Dijkstra's algorithm fails. Why is this so?
- Suppose a vertex, u, is marked as "known". This means that the shortest path from the starting vertex, s, to u has been found.
- However, it's possible that there is negatively weighted edge from an unknown vertex, v, back to u. In that case, taking the path from s to v to u is actually shorter than the path from s to u without going through v.
- Other algorithms exist that handle edges with negative weights for weighted shortest-path problem.

Directed Acyclic Graphs

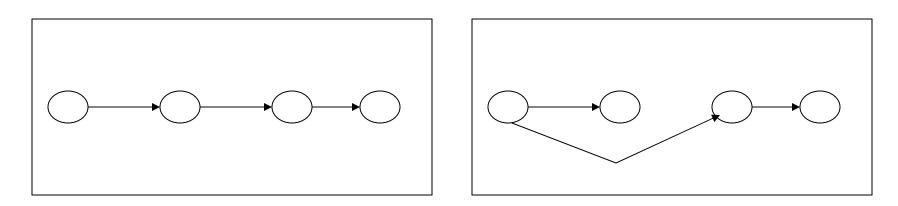
- A <u>directed acyclic graph</u> is a directed graph with no cycles.
- A <u>strict partial order</u> R on a set S is a binary relation such that
 - □ for all $a \in S$, aRa is false (irreflexive property)
 - If or all a,b,c ∈ S, if aRb and bRc then aRc is true (transitive property)
- To represent a partial order with a DAG:
 - represent each member of S as a vertex
 - for each pair of vertices (a,b), insert an edge from a to b if and only if aRb

More Definitions

- Vertex i is a <u>predecessor</u> of vertex j if and only if there is a path from i to j.
- Vertex i is an <u>immediate predecessor</u> of vertex j if and only if (i, j) is an edge in the graph.
- Vertex j is a <u>successor</u> of vertex i if and only if there is a path from i to j.
- Vertex j is an <u>immediate successor</u> of vertex i if and only if (i, j) is an edge in the graph.
- The *indegree* of a vertex, v, is the number of edges (u, v), i.e. the number of edges that come "into" v.

Topological Ordering

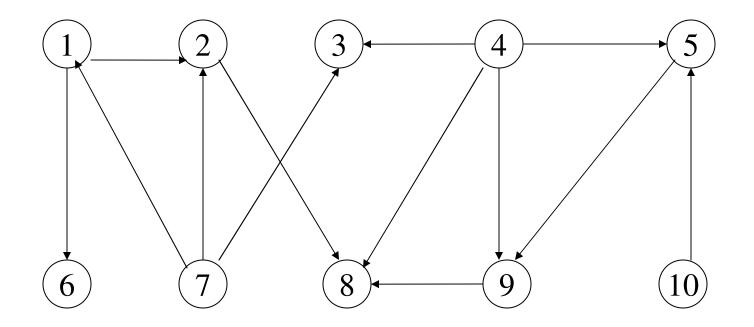
• A topological ordering of the vertices of a DAG G = (V,E) is a linear ordering such that, for vertices i, $j \in V$, if i is a predecessor of j, then i precedes j in the linear order, i.e. if there is a path from v_i to v_j , then v_i comes before v_i in the linear order



```
Topological Sort
```

```
void topsort( ) throws CycleFoundException
{
   Queue<Vertex> q = new Queue<Vertex>( );
    int counter = 0;
    for each Vertex v
        if( v.indegree == 0 )
            q.enqueue( v );
   while( !q.isEmpty( ) )
    {
        Vertex v = q.dequeue( );
        v.topNum = ++counter; // Assign next number
        for each Vertex w adjacent to v
            if( --w.indegree == 0 )
                q.enqueue( w );
    }
    if( counter != NUM_VERTICES )
        throw new CycleFoundException( );
}
```

TopSort Example



Running Time of TopSort

- At most, each vertex is enqueued just once, so there are O(|V|) constant time queue operations.
- 2. The body of the for loop is executed at most once per edges = O(|E|)
- 3. The initialization is proportional to the size of the graph if adjacency lists are used = O(|E| + |V|)
- 4. The total running time is therefore O (|E| + |V|)