CMSC 341

Disjoint Sets

Disjoint Set Definition

- Suppose we have an application involving \mathbf{N} distinct items. We will not be adding new items, nor deleting any items. Our application requires us to partition the items into a collection of sets such that:
- each item is in a set,
- no item is in more than one set.
- Examples
- UMBC students according to class rank.
- CMSC 341 students according to GPA.
- The resulting sets are said to be disjoint sets.

Disjoint Set Terminology

- We identify a set by choosing a representative element of the set. It doesn't matter which element we choose, but once chosen, it can't change.
- There are two operations of interest:
- find (x) -- determine which set x is in. The return value is the representative element of that set
- union (x, y) -- make one set out of the sets containing x and y.
- Disjoint set algorithms are sometimes called union-find algorithms.

Disjoint Set Example

Given a set of cities, C , and a set of roads, R , that connect two cities (x, y) determine if it's possible to travel from any given city to another given city.

```
for (each city in C)
    put each city in its own set
for (each road (x,y) in R)
    if (find( x ) != find( y ))
                union(x, y)
```

Now we can determine if it's possible to travel by road between two cities c_{1} and c_{2} by testing

$$
\text { find }\left(C_{1}\right)==\text { find }\left(C_{2}\right)
$$

Up-Trees

- A simple data structure for implementing disjoint sets is the up-tree.

H , A and W belong to the same set. H is the representative.

$\mathrm{X}, \mathrm{B}, \mathrm{R}$ and F are in the same set. X is the representative.

Operations in Up-Trees

find() is easy. Just follow pointer to representative element. The representative has no parent.

```
find(x)
{
    if (parent(x)) // not the representative
        return(find(parent(x)) ;
    else
        return (x); // representative
}
```


Union

- Union is more complicated.
- Make one representative element point to the other, but which way?
Does it matter?
- In the example, some elements are now twice as deep as they were before.

Union(H, X)

X points to H .
B, R and F are now deeper.

H points to X .
A and W are now deeper.

A Worse Case for Union

Union can be done in $\mathrm{O}(1)$, but may cause find to become $\mathrm{O}(\mathrm{n})$.

Consider the result of the following sequence of operations:
Union (A, B)
Union (C, A)
Union (D, C)
Union (E, D)

Array Representation of Up-tree

- Assume each element is associated with an integer $\mathrm{i}=0 . \ldots \mathrm{n}-1$. From now on, we deal only with i.
- Create an integer array, $s[n]$
- An array entry is the element's parent
- $s[i]=-1$ signifies that element i is the representative element.

Union/Find with an Array

Now the union algorithm might be:

```
public void union(int root1,int root2) {
    s[root2] = root1; // attaches root2 to root1
}
```

The find algorithm would be

```
public int find(int x) {
    if (s[x] < 0)
        return(x);
    else
        return(find(s[x]));
}
```


Improving Performance

- There are two heuristics that improve the performance of union-find.
- Path compression on find
- Union by weight

Path Compression

Each time we find () an element E, we make all elements on the path from E to the root be immediate children of root by making each element's parent be the representative.

```
public int find(int x) {
    if (s[x]<0)
        return(x);
        s[x] = find(s[x]); // one new line of code
        return (s[x]);
}
```

When path compression is used, a sequence of m operations takes $\mathrm{O}(\mathrm{m} \lg \mathrm{n})$ time. Amortized time is $\mathrm{O}(\lg \mathrm{n})$ per operation.

"Union by Weight" Heuristic

Always attach the smaller tree to larger tree.

```
public void union(int root1,int root2) {
```

 rep_root \(1=\) find (root1);
 rep_root \(2=\) find (root 2\()\);
 if(weight[rep_root1] < weight[rep_root2]) \{
 s[rep_root1] = rep_root 2 ;
 weight[rep_root2]+= weight[rep_root1];
 \}
 else \{
 s[rep_root2] = rep_root1;
 weight[rep_root1] += weight[rep_root2];
 \}
 \}

Performance with Union by Weight

- If unions are performed by weight, the depth of any element is never greater than $\lg \mathrm{N}$.
- Intuitive Proof:
- Initially, every element is at depth zero.
- An element's depth only increases as a result of a union operation if it's in the smaller tree in which case it is placed in a tree that becomes at least twice as large as before (union of two equal size trees).
- Only Ig N such unions can be performed until all elements are in the same tree
- Therefore, find() becomes O(lgn) when union by weight is used -- even without path compression.

Performance with Both Optimizations

- When both optimizations are performed a sequence of $m(m \geq n)$ operations (unions and finds), takes no more than $\mathrm{O}\left(\mathrm{m} \mathrm{Ig}^{*} \mathrm{n}\right)$ time.
- $\lg ^{*} n$ is the iterated (base 2) logarithm of n-- the number of times you take $\lg \mathrm{n}$ before n becomes ≤ 1.
- Union-find is essentially $O(m)$ for a sequence of m operations (amortized O(1)).

A Union-Find Application

- A random maze generator can use unionfind. Consider a 5×5 maze:

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Maze Generator

- Initially, 25 cells, each isolated by walls from the others.
- This corresponds to an equivalence relation -- two cells are equivalent if they can be reached from each other (walls been removed so there is a path from one to the other).

Maze Generator (cont.)

- To start, choose an entrance and an exit.

Maze Generator (cont.)

- Randomly remove walls until the entrance and exit cells are in the same set.
- Removing a wall is the same as doing a union operation.
- Do not remove a randomly chosen wall if the cells it separates are already in the same set.

MakeMaze

```
MakeMaze(int size) {
    entrance = 0; exit = size-1;
    while (find(entrance) != find(exit)) {
            celll = a randomly chosen cell
            cell2 = a randomly chosen adjacent cell
            if (find(cell1) != find(cell2)
                        union(cell1, cell2)
    }
}
```


Initial State

	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

$\{0\}\{1\}\{2\}\{3\}\{4\}\{5\}\{6\}\{7\}\{8\}\{9\}\{10\}\{11\}\{12\}\{13\}\{14\}\{15\}\{16\}\{17\}\{18\}\{19\}\{20\}\{21\}$ \{22\} \{23\} \{24\}

Intermediate State

- Algorithm selects wall between 8 and 13. What happens?

$\{0,1\}\{2\}\{3\}\{4,6,7,8,9,13,14\}\{5\}\{10,11,15\}\{12\}\{16,17,18,22\}\{19\}\{20\}\{21\}\{23\}\{24\}$

A Different Intermediate State

- Algorithm selects wall between 8 and 13. What happens?

$\{0,1\}\{2\}\{3\}\{4,6,7,8,9,13,14,16,17,18,22\}\{5\}\{10,11,15\}\{12\}\{19\}\{20\}\{21\}\{23\}\{24\}$

Final State

$\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24\}$

