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Complexity

� How many resources will it take to solve a 
problem of a given size?
� time
� space

� Expressed as a function of problem size (beyond 
some minimum size)
� how do requirements grow as size grows?

� Problem size
� number of elements to be handled
� size of thing to be operated on
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The Goal of Asymptotic Analysis

� How to analyze the running time (aka computational 
complexity) of an algorithm in a theoretical model.

� Using a theoretical model allows us to ignore the 
effects of 
� Which computer are we using?
� How good is our compiler at optimization

� We define the running time of an algorithm with 
input size n as T ( n ) and examine the rate of 
growth of T( n ) as n grows larger and larger and 
larger.
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Growth Functions

� Constant
T(n) = c
ex: getting array element at known location 

any simple C++ statement (e.g. assignment)

� Linear
T(n) = cn [+ possible lower order terms]
ex: finding particular element in array of size n

(i.e. sequential search)
trying on all of your n shirts
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Growth Functions (cont.)

� Quadratic
T(n) = cn2 [ + possible lower order terms]
ex: sorting all the elements in an array (using bubble 
sort) 
trying all your n shirts with all your n ties

� Polynomial
T(n) = cnk [ + possible lower order terms]
ex: finding the largest element of a k-dimensional array

looking for maximum substrings in array
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Growth Functions (cont.)

� Exponential
T(n) = cn [+ possible lower order terms]
ex: constructing all possible orders of array elements

Towers of Hanoi (2n)
Recursively calculating nth Fibonacci number (2n)

� Logarithmic
T(n) = lg n [ + possible lower order terms]
ex: finding a particular array element (binary search)
any algorithm that continually divides a problem in half
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A Graph of Growth Functions
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Expanded Scale
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Asymptotic Analysis

� How does the time (or space) requirement grow as the 
problem size grows really, really large?
� We are interested in “order of magnitude” growth rate.
� We are usually not concerned with constant 

multipliers. For instance, if the running time of an 
algorithm is proportional to (let’s suppose) the square 
of the number of input items, i.e. T(n) is c*n2, we won’t 
(usually) be concerned with the specific value of c.

� Lower order terms don’t matter.
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Analysis Cases

� What particular input (of given size) gives worst/best/average 
complexity?

Best Case: If there is a permutation of the input data that minimizes the
“run time efficiency”, then that minimum is the best case run time 
efficiency

Worst Case: If there is a permutation of the input data that maximizes 
the “run time efficiency”, then that maximum is the best case run 
time efficiency

Average case is the “run time efficiency” over all possible inputs. 

� Mileage example: how much gas does it take to go 20 miles?
� Worst case: all uphill
� Best case: all downhill, just coast
� Average case: “average terrain
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Cases Example

� Consider sequential search on an unsorted 
array of length n, what is time complexity?

� Best case:

� Worst case:

� Average case:
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Definition of Big-Oh

� T(n) = O(f(n)) (read “T( n ) is in Big-Oh of f( n )” )

if and only if T(n) ≤ cf(n) for some constants c, n0 and n ≥ n0

This means that eventually (when n ≥ n0 ), T( n ) is always less 
than or equal to c times f( n ).

The growth rate of T(n) is less than or equal to that of f(n)
Loosely speaking, f( n ) is an “upper bound” for T ( n )

NOTE: if T(n) =O(f(n)), there are infinitely many pairs of c’s and 
n0

’s that satisfy the relationship. We only need to find one 
such pair for the relationship to hold.
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Big-Oh Example

� Suppose we have an algorithm that reads N integers from 
a file and does something with each integer.

� The algorithm takes some constant amount of time for 
initialization (say 500 time units) and some constant 
amount of time to process each data element (say 10 time 
units).  

� For this algorithm, we can say T( N ) = 500 + 10N.
� The following graph shows T( N ) plotted against N, the 

problem size and 20N.
� Note that the function N will never be larger than the 

function T( N ), no matter how large N gets.  But there are 
constants c0 and n0 such that T( N ) <= c0N when N >= n0, 
namely c0 = 20 and n0 = 50.

� Therefore, we can say that T( N ) is in  O( N ).
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T( N ) vs. N vs. 20N
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Simplifying Assumptions

1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))

3. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), 
then f1(n) + f2(n) = O(max (g1(n), g2(n)))

4. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), 
then f1(n) * f2(n) = O(g1(n) * g2(n))
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Example

� Code:
a = b;

++sum;

int y = Mystery( 42 );

� Complexity:
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Example

� Code:
sum = 0;

for (i = 1; i <= n; i++)

sum += n;

� Complexity:
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Example

� Code:

sum1 = 0;

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

sum1++;

� Complexity:
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Example

� Code:
sum1 = 0;

for (i = 1; i <= m; i++)

for (j = 1; j <= n; j++)

sum1++;

� Complexity:



8/3/07 UMBC CMSC 341 AA2-color 20

Example

� Code:
sum2 = 0;

for (i = 1 ; i <= n; i++)

for (j = 1; j <= i; j++)

sum2++;

� Complexity:
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Example

� Code:
sum = 0;

for (j = 1; j <= n; j++)

for (i = 1; i <= j; i++)

sum++;

for (k = 0; k < n; k++)

a[ k ] = k;

� Complexity:
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Example

� Code:
sum1 = 0;

for (k = 1; k <= n; k *= 2)

for (j = 1; j <= n; j++)

sum1++;

� Complexity:
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Example

� Using Horner’s rule to convert a string to an integer

static int convertString(String key)

{

int intValue = 0;

// Horner’s rule

for (int i = 0; i < key.length(); i++)

intValue = 37 * intValue + key.charAt(i);

return intValue

}
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Example

� Square each element of an N x N matrix

� Printing the first and last row of an N x N matrix

� Finding the smallest element in a sorted array of N 
integers

� Printing all permutations of N distinct elements
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Space Complexity

� Does it matter?

� What determines space complexity?

� How can you reduce it?

� What tradeoffs are involved?
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Constants in Bounds

� Theorem: 
If T(x) = O(cf(x)), then T(x) = O(f(x))

� Proof:
� T(x) = O(cf(x)) implies that there are constants c0

and n0 such that T(x) ≤ c0(cf(x)) when x ≥ n0

� Therefore, T(x) ≤ c1(f(x)) when x ≥ n0 where c1 = 
c0c

� Therefore, T(x) = O(f(x))
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Sum in Bounds
� Theorem:

Let T1(n) = O(f(n)) and T2(n) = O(g(n)). 
Then T1(n) + T2(n) = O(max (f(n), g(n))).

� Proof:
� From the definition of O, T1(n) ≤ c1f (n) for n ≥ n1 

and T2(n) ≤ c2g(n) for n ≥ n2 

� Let n0 = max(n1, n2).
� Then, for n ≥ n0, T1(n) + T2(n) ≤ c1f (n) + c2g(n)
� Let c3 = max(c1, c2). 
� Then, T1(n) + T2(n) ≤ c3 f (n) + c3 g (n)

≤ 2c3 max(f (n), g (n))
≤ c max(f (n), g (n)) 
= O (max (f(n), g(n)))
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Products in Bounds

� Theorem: 
Let T1(n) = O(f(n)) and T2(n) = O(g(n)). 
Then T1(n) * T2(n) = O(f(n) * g(n)).

� Proof:

� Since T1(n) = O(f(n)), then T1 (n) ≤ c1f(n) when n ≥ n1

� Since T2(n) = O(g(n)), then T2 (n) ≤ c2g(n) when n ≥ n2

� Hence T1(n) * T2(n) ≤ c1 * c2 * f(n) * g(n) when n ≥ n0 
where n0 = max (n1, n2)

� And T1(n) * T2(n) ≤ c * f (n) * g(n) when n ≥ n0 
where n0 = max (n1, n2) and c = c1*c2

� Therefore, by definition, T1(n)*T2(n) = O(f(n)*g(n)).
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Polynomials in Bounds

� Theorem: 
If  T (n) is a polynomial of degree k, then T(n) = 
O(nk). 

� Proof:
� T (n) = nk + nk-1 + … + c is a polynomial of degree 

k.
� By the sum rule, the largest term dominates. 
� Therefore,  T(n) = O(nk). 
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L’Hospital’s Rule

� Finding limit of ratio of functions as variable 
approaches ∞

� Use this rule to prove other function growth 
relationships

f(x) = O(g(x)) if 

( ) ( )xg

xf

xg

xf

xx '

)(')(
limlim

∞→∞→
=

( ) 0
)(

lim =
∞→ xg

xf

x



8/3/07 UMBC CMSC 341 AA2-color 31

Polynomials of Logarithms in Bounds
� Theorem: 

lgkn = O(n) for any positive constant k

� Proof:

� Note that lgk n means (lg n)k.

� Need to show lgk n ≤ cn for n ≥ n0. Equivalently, can 
show lg n ≤ cn1/k

� Letting a = 1/k, we will show that lg n = O(na) for any 
positive constant a. Use L’Hospital’s rule:
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Ex: lg1000000(n) = O(n)
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Polynomials vs Exponentials in Bounds

� Theorem: 
nk = O(an) for a > 1

� Proof:
� Use L’Hospital’s rule
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Little-Oh and Big-Theta

� In addition to Big-O, there are other definitions used 
when discussing the relative growth of functions

Big-Theta – T(n) = Θ( f(n) ) if c1*f(n) ≤ T(n) ≤ c2*f(n)
This means that f(n) is both an upper- and lower-bound for T(n)
In particular, if T(n) = Θ( f(n) ) , then T(n) = O( f(n) )

Little-Oh – T(n) = o( f(n) ) if for all constants c there exist 
n0 such that T(n) < c*f(n).
Note that this is more stringent than the definition of Big-O and 
therefore if T( n ) = o( f(n) ) then T(n) = O( f(n) )
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Determining Relative Order of Growth
� Given the definitions of Big-Theta and Little-o,

we can compare the relative growth of any two 
functions using limits.  See text pages 29 – 31.

f(x) = o(g(x)) if 

By definition, if f(x) = o(g(x)), then f(x) = O(g(x)).

f(x) = Θ(g(x)) if
for some constant c > 0.

By definition if f(x) = Θ(g(x)), then f(x) = O(g(x))
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Determining relative order of Growth

� Often times using limits is unnecessary as simple 
algebra will do.

� For example, if f(n) = n log n and g(n) = n1.5 then 
deciding which grows faster is the same as determining 
which of  f(n) = log n and g(n) = n0.5 grows faster (after 
dividing both functions by n), which is the same as 
determining which of f(n) = log2 n and g(n) = n grows 
faster (after squaring both functions).  Since we know 
from previous theorems that n (linear functions) grows 
faster than any power of a log, we know that g(n) grows 
faster than f(n).
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Relative Orders of Growth

An Exercise
n (linear)

logkn for 0 < k < 1
constant

n1+k for k > 0 (polynomial)
2n (exponential)

n log n
logkn for k > 1

nk for 0 < k < 1
log n
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Big-Oh is not the whole story

� Suppose you have a choice of two approaches to writing a program. 
Both approaches have the same asymptotic performance (for 
example, both are O(n lg(n)). Why select one over the other, they're 
both the same, right? They may not be the same. There is this small 
matter of the constant of proportionality. 

� Suppose algorithms A and B have the same asymptotic 
performance, TA(n) = TB(n) = O(g(n)). Now suppose that A does 10 
operations for each data item, but algorithm B only does 3. It is 
reasonable to expect B to be faster than A even though both have 
the same asymptotic performance. The reason is that asymptotic 
analysis ignores constants of proportionality. 

� The following slides show a specific example.
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Algorithm A

� Let's say that algorithm A is 
{ 

initialization // takes 50 units

read in n elements into array A; // 3 units/element
for (i = 0; i < n; i++) 

{

do operation1 on A[i]; // takes 10 units
do operation2 on A[i]; // takes 5 units

do operation3 on A[i]; // takes 15 units

}
}

TA(n) = 50 + 3n + (10 + 5 + 15)n = 50 + 33n
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Algorithm B

� Let's now say that algorithm B is 
{ 

initialization // takes 200 units
read in n elements into array A; // 3 units/element  for (i = 0; i < n; i++)

{

do operation1 on A[i]; // takes 10 units
do operation2 on A[i]; //takes 5 units

}

} 

TB(n) =200 + 3n + (10 + 5)n = 200 + 18n
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TA( n ) vs. TB( n )
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A concrete example

4 x 1013

years
1 ms10 µs0.66 µs0.1 µs100

13 days125 µs2.5 µs0.28 µs0.05 µs50

1 ms8 µs0.4 µs0.09 µs0.02 µs20

1 µs1 µs0.1 µs0.03 µs0.01 µs10

0.03 µs0.13 µs0.03 µs0.01 µs0.005 µs5

Tn = 2nT(n) = n3T(n) = n2T(n) = nlgnT(n) = nN

The following table shows how long it would take to perform T(n) steps on a computer 
that does 1 billion steps/second. Note that a microsecond is a millionth of a second and 
a millisecond is a thousandth of a second. 

Notice that when n >= 50, the computation time for T(n) = 2n has started to become too 
large to be practical. This is most certainly true when n >= 100. Even if we were to 
increase the speed of the machine a million-fold, 2n for n = 100 would be 40,000,000 
years, a bit longer than you might want to wait for an answer. 
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Relative Orders of Growth

Answers
constant

logkn for 0 < k < 1
log n

logkn for k> 1 
nk for k < 1

n (linear)

n log n
n1+k for k > 0 (polynomial)

2n (exponential)
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Amortized Analysis

� Sometimes the worst-case running time of an operation 
does not accurately capture the worst-case running time 
of a sequence of operations. 

� What is the worst-case running time of the vector’s 
push_back( ) method that places a new element at the 
end of the vector?

� The idea of amortized analysis is to determine the 
average running time of the worst case.
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Amortized Example – push_back( )
� What is the running time for vector.push_back( X )? 

� In the worst case, there is no room in the vector for X.  The vector then 
doubles its current size, copies the existing elements into the new 
vector, then places X in the next available slot. This operation is O( N ) 
where N is the current number of elements in the vector.

� But this doubling happens very infrequently.  (how often?)
� If there is room in the vector for X, then it is just placed in the next 

available slot in the vector and no doubling is required.  This operation 
is O( 1 ) – constant time

� To discuss the running time of push_back( ) it makes more sense to 
look at a long sequence of push_back( ) operations.

� A sequence of N push_back( ) operations can always be done in O(N), 
so we say the amortized running time of per push_back( )operation is  
O(N) / N = O(1) or constant time.

� We are willing to perform a very slow operation (doubling the vector 
size) very infrequently in exchange for frequently having very fast 
operations.
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Amortized Analysis Example

� What is the average number of bits that are changed when a binary number 
is incremented by 1?

� For example, suppose we increment 01100100.

� We will change just 1 bit to get 01100101.
� Incrementing again produces 01100110, but this time 2 bits were changed. 

� Some increments will be “expensive”, others “cheap”.

� How can we get an average?  We do this by looking at a sequence of 
increments.

� When we compute the total number of bits that change with n increments, 
divide that total by n, the result will be the average number of bits that 
change with an increment. 

� The table on the next slide shows the bits that change as we increment a 
binary number.(changed bits are shown in red). 
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Analysis

1500010

1111100

1001100

810100

700100

411000

301000

110000

Start =000000

Total bits changed2021222324

We see that bit position 20 changes every time we increment. Position 21 every 
other time (1/2 of the increments), and  bit position 2J changes each 1/2J

increments. We can total up the number of bits that change:
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Analysis, continued

� The total number of bits that are changed by incrementing 
n times is:  

 j
n

j

n 2/
)lg(

0
∑

=

When we perform n increments, the total number of bit changes is <= 2n.

The average number of bits that will be flipped is 2n/n = 2. So the amortized 
cost of each increment is constant, or O(1). 
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We can simplify the summation:


