CMSC 341 Data Structures B-Tree Review

April 28, 2005

- 1. Define B-Tree.
- 2. What does it mean to say a B-Tree is **order M**?
- 3. When describing a B-Tree, what does L represent?
- 4. Give the pseudo-code for finding a particular element in a B-Tree of order M.
- 5. Given the drawing of a B-Tree, show the new B-Tree after inserting a given element.
- 6. Given the drawing of a B-Tree, show the new B-Tree after deleting a given element.
- 7. Draw a valid B-Tree with M=4 and L=3 containing the integer values 1 25.
- 8. Show the result of inserting the elements 1, 3, 5, 7, 9, 11, 6 into an initially empty B-Tree with M=3 and L=3. Show the tree at the end of each insertion.
- 9. Given the characteristics of an external storage problem
 - (a) The number of items to be stored
 - (b) The size (in bytes) of the key for each item
 - (c) The size (in bytes) of each item
 - (d) The size (in bytes) of a disk block

design a suitable B-Tree (i.e. calculate appropriate values of M and L).

10. What is the minimum and maximum number of leaves in a B-Tree of height 2 when M=3?

- 11. The average case performance of the dictionary operations insert, find, and delete is in $O(\lg N)$ for balanced binary search trees like Red-Black trees. In a B-Tree, the average asymptotic performance for the dictionary operations is in $O(\log_M N)$ where M is the order of the B-Tree. Discuss the following
 - (a) When M = 2, do the B-Tree and the RB Tree have equivalent asymptotic performance for the disctionary operations? Are there advantages of one over the other?
 - (b) B-Tree height is proportional to $log_M N$ indicating that for a given N, a B-Tree of higher order will be shorter than one of lower order. Is this true? If so, why not always choose a very high value for M since the average asymptotic performance of the dictionary operations is in O(height).
 - (c) B-Trees find their greatest utility when data are stored externally (on disk rather than in memory). Why is this so?