CMSC 341

K-D Trees
K-D Tree

• Introduction
 – Multiple dimensional data
 • Range queries in databases of multiple keys:
 Ex. find persons with
 \[34 \leq \text{age} \leq 49 \text{ and } \$100k \leq \text{annual income} \leq \$150k\]
 • GIS (geographic information system)
 • Computer graphics
 – Extending BST from one dimensional to k-dimensional
 • It is a binary tree
 • Organized by levels (root is at level 0, its children level 1, etc.)
 • Tree branching at level 0 according to the first key, at level 1 according to the second key, etc.

• KdNode
 – Each node has a vector of keys, in addition to the pointers to its subtrees.
K-D Tree

A 2-D tree example
2-D Tree Operations

• Insert
 – A 2-D item (vector of size 2 for the two keys) is inserted
 – New node is inserted as a leaf
 – Different keys are compared at different levels

• Find/print with an orthogonal (rectangular) range

 high[1]

 key[1]

 low[1]

 key[0]

 low[0]

 high[0]

 – exact match: insert (low[level] = high[level] for all levels)
 – partial match: (query ranges are given to only some of the k keys, other keys can be thought in range $\pm \infty$)
2-D Tree Insertion

template <class Comparable>
void KdTree <Comparable>::insert(const vector<Comparable> &x)
{
 insert(x, root, 0);
}

// this code is specific for 2-D trees
template <class Comparable>
void KdTree <Comparable>::
insert(const vector<Comparable> &x, KdNode * & t, int level)
{
 if (t == NULL)
 t = new KdNode(x);
 else if (x[level] < t->data[level])
 insert(x, t->left, 1 - level);
 else
 insert(x, t->right, 1 - level);
}
Insert (55, 62) into the following 2-D tree

Null pointer, attach
2-D Tree: PrintRange

/**
 * Print items satisfying
 * low[0] <= x[0] <= high[0] and
 */

template <class Comparable>
void KdTree <Comparable>::
PrintRange(const vector<Comparable> &low,
 const vector<Comparable> & high) const
{
 PrintRange(low, high, root, 0);
}
2-D Tree: PrintRange (cont’d)

template <class Comparable>
void KdTree <Comparable>::
PrintRange(const vector<Comparable> &low,
 const vector<Comparable> &high,
 KdNode * t, int level)
{
 if (t != NULL)
 {
 if ((low[0] <= t->data[0] && t->data[0] <= high[0])
 cout << "(" << t->data[0] << ","
 << t->data[1] << ")" << endl;
 if (low[level] <= t->data[level])
 PrintRange(low, high, t->left, 1 - level);
 if (high[level] >= t->data[level])
 PrintRange(low, high, t->right, 1 - level);
 }
}
PrintRange in a 2-D Tree

In range? If so, print cell
Low[level] <= data[level] => search t -> left
High[level] >= data[level] => search t -> right

53, 14

27, 28

30, 11
29, 16
38, 23

40, 26

31, 85
7, 39
15, 61

32, 29

70, 3

65, 51

99, 90
82, 64

73, 75

low[0] = 35, high[0] = 40;

This subtree is never searched

Searching is “preorder”. Efficiency is obtained by “pruning” subtrees from the search.

1/19/2006
3-D Tree example

What property (or properties) do the nodes in the subtrees labeled A, B, C, and D have?
K-D Operations

- Modify the 2-D insert code so that it works for K-D trees.
- Modify the 2-D PrintRange code so that it works for K-D trees.
K-D Tree Performance

- Insert
 - Average and balanced trees: $O(\lg N)$
 - Worst case: $O(N)$
- Print/search with a square range query
 - Exact match: same as insert ($\text{low[level]} = \text{high[level]}$ for all levels)
 - Range query: for M matches
 - Perfectly balanced tree:
 - K-D trees: $O(M + kN^{(1 - 1/k)})$
 - 2-D trees: $O(M + \sqrt{N})$
 - Partial match
 - in a random tree: $O(M + N^\alpha)$ where $\alpha = (-3 + \sqrt{17}) / 2$
K-D Tree Performance

- More on range query in a perfectly balanced 2-D tree:
 - Consider one boundary of the square (say, low[0])
 - Let $T(N)$ be the number of nodes to be looked at with respect to low[0]. For the current node, we may need to look at
 - One of the two children (e.g., node (27, 28), and
 - Two of the four grand children (e.g., nodes (30, 11) and (31, 85).
 - Write $T(N) = 2 \cdot T(N/4) + c$, where $N/4$ is the size of subtrees 2 levels down (we are dealing with a perfectly balanced tree here), and $c = 3$.
 - Solving this recurrence equation:

$$T(N) = 2T(N/4) + c = 2(2T(N/16) + c) + c$$

$$= c(1 + 2 + \cdots + 2^\log_4 N) = 2^{1 + \log_4 N} - 1$$

$$= 2 \cdot 2^{\log_4 N} - 1 = 2^{((\log_2 N)/2)} - 1 = O(\sqrt{N})$$
K-D Tree Remarks

• Remove
 – No good remove algorithm beyond lazy deletion (mark the node as removed)
• Balancing K-D Tree
 – No known strategy to guarantee a balanced 2-D tree
 – Periodic re-balance
• Extending 2-D tree algorithms to k-D
 – Cycle through the keys at each level