CMS(C-341 Data Structures
Spring 2000 26 February 2000 Stacks and Queues Review

These are some review questions to test your understanding of the material. Some of these questions may appear
on an exam.

1 Stacks and Queues

Please see the definition of Stack on page 3 and of Queue on page 4. These are the definitions from the text with
minor modifications noted.

1.1 Suppose that q is an object of the Queue class and was constructed as
Queue<char> q; // Queue of size 5, initially empty

For the following problems, assume that q is initially empty. Show the contents of element and the values
of data members front and back initially and after each statement has executed. Indicate any errors

that occur.

1. initial: _ _ _ _ _ front= back=
q.enqueue(’A’); _ _ _ _ _ front= back=
q.enqueue(’B’); _ _ _ _ _ front= back=
gq.enqueue(’C’); _ _ _ _ _ front= back=
char ch = q.Dequeuve(); _ _ _ _ _ front= back=
g.enqueue(ch); _ _ _ _ _ front= back=

2. initial: _ _ _ _ _ front= back=
q.enqueue(’X’); _ _ _ _ _ front= back=
q.enqueue(’Y?’); _ _ _ _ _ front= back=
q.enqueue(’Z’); _ _ _ _ _ front= back=
while (t'q.Empty())

{
char ch = gq.Dequeue(}; _ _ _ _ _ front= back= // each time
}

1.2

1.3

1.4

1.5

1.6

3. initial: front= back=

char ch = ’q’;
for (int i = 1; i <= 3; ++i) // show result for each iteration
{
q.enqueue(ch); _ _ _ _ _ front= back=
ch++; _ _ _ _ _ front= back=
q.enqueue(ch); _ _ _ _ _ front= back=
q.Dequeve(); _ _ _ _ _ front= back=
}

Use the given operations for Stack for this problem. Write a C++ function

template <class Object>
Stack<Object> copyStack(Stack<Object> & stk)

that returns a Stack containing the elements of stk, in the same order as in stk.

Use the given operations for Queue and Stack for this problem.

Write a C++ program that determines if a given string is a palindrome (i.e. reads the same forward
and backward). Your program should print (to cout) “palindrome” if the string is a palindrome and
“not-palindrome” if it is not. You may assume that the string to be tested is initially stored in a null-
terminated array of char. You are to push each character onto a stack and enqueue it onto a queue. The
test is to use only operations on the queue and the stack.

Describe (pseudo-code is fine) how the operations isEmpty, pop, and push are implemented in the text’s
array implementation of Stack (shown on page 3).

Describe (pseudo-code is fine) how the operations isEmpty, pop, and push are implemented in the List-
based implementation of Stack given in the lecture notes.

Describe the advantages and disadvantages of the text’s array and the lecture note’s list implementations
of the stack ADT. Consider the asymptotic behavior for each of the operations isEmpty, pop, and push.
Also consider the storage requirements for each implementation.

Definition of Stack Class

Note: this is directly out of the text. The meanings of the operations are the same as in the text.

template <class Object>
class Stack
{
public:
explicit Stack(int capacity = 10);

bool isEmpty() const;
bool isFull() const;
const Object & top() const;

void makeEmpty();

void pop();

void push(const Object & x);
Object topAndPop();

private:
vector<Object> thelArray;
int top0fStack;
5

Definition of Queue Class

Note: this differs from the text only in that the initial size is 5, not
the same as in the text.

template <class Object>
class Queue
{
public:
explicit Queue(int capacity = 5);

bool isEmpty() const;
bool isFull() const;
const Object & getFront() const;

void makeEmpty();
Object dequeue();
void enqueue(const Object & x);

private:
vector<Object> thelArray;
int currentSize;
int front;
int back;

void increment(int & x);

10. The meanings of the operations are

