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Example
Code:

sum1 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=n; j++)
sum1++;

Complexity:
Code:

sum2 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=k; j++)
sum2++;

Complexity:

Some Questions
1. Is upper bound the same as worst case?

2. Does lower bound happen with shortest input?

3. What if there are multiple parameters?
Ex: Rank order of p pixels in c colors
for (i = 0; i < c; i++)

count[I] = 0;
for (i = 0; i < p; i++)

count[value(i)]++;
sort(count)
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Space Complexity
Does it matter?

What determines space complexity?

How can you reduce it?

What tradeoffs are involved?

Constants in Bounds
Theorem:

O(cf(x) = O(f(x))
Proof:

– T(x) = O(cf(x)) implies that there are constants c0 and
n0 such that T(x) ≤ c0(cf(x)) when x ≥ n0

– Therefore, T(x) ≤ c1(f(x)) when x ≥ n0 where c1 = c0c
– Therefore, T(x) = O(f(x)) 
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Sum in Bounds
Theorem:

Let T1(n) = O(f(n) and T2(n) = O(g(n)).
Then T1(n) + T2(n) = O(max(f(n),g(n)).

Proof:
– From the definition of O, T1(n) ≤ c1f (n) for n ≥ n1  and

T2(n) ≤ c2g(n) for n ≥ n2

– Let n0 = max(n1, n2).
– Then, for n ≥ n0, T1(n) + T2(n) ≤ c1f (n) + c2g(n)
– Let c3 = max(c1, c2).
– Then, T1(n) + T2(n) ≤ c3 f (n) + c3 g (n)

      ≤ 2c3 max(f (n), g (n))
      ≤ c max(f (n), g (n)) 

Products in Bounds
Theorem:

Let T1(n) = O(f(n) and T2(n) = O(g(n)).
Then T1(n)T2(n) = O(f(n),g(n)).

Proof:
– T1(n) T2(n) ≤ c1 c2f (n) g(n) when n ≥ n0

– Therefore, T1(n)T2(n) = O(f(n),g(n)). 



5

Polynomials in Bounds
Theorem:

If  T (n) is a polynomial of degree x, then T(n) = O(nx).

Proof:
– T (n) = nx + nx-1 + …  + k is a polynomial of degree x.
– By the sum rule, the largest term dominates.
– Therefore,  T(n) = O(nx).

L’Hospital’s Rule
Finding limit of ratio of functions as variable approaches ∞

Use to determine O or Ω  ordering of two functions

f(x = O(g(x)) if

f(x) = Ω (g(x)) if
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Polynomials of Logarithms in Bounds
Theorem:

lgxn = O(n) for any positive constant k
Proof:

– Note that lgk n means (lg n)k.
– Need to show lgk n ≤ cn for n ≥ n0. Equivalently, can

show lg n ≤ cn1/k

– Letting a = 1/k, we will show that lg n = O(na) for any
positive constant a. Use L’Hospital’s rule:

Ex: lg1000000(n)=O(n)
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 Polynomials vs Exponentials in Bounds
Theorem:

 nk = O(an) for a > 1
Proof:

– Use L’Hospital’s rule

= ...

= 0
Ex: n1000000 = O(1.00000001n)
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Relative Orders of Growth
n (linear)
logkn for k < 1
constant
n1+k for k > 0 (polynomial)
2n (exponential)
n log n
logkn for k > 1
nk for k < 1
log n

Relative Orders of Growth
constant
logkn for k> 1
log n
nk for k < 1
n (linear)
n log n
n1+k for k > 0 (polynomial)
2n (exponential)
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List ADT (expanded from Weiss)
A list is a dynamic ordered tuple of homogeneous elements

A1, A2, A3, … , AN

where Ai is the ith element of the list

Definition: The position of element A i is i; positions range
from 1 to N inclusive

Definition: The size of a list is N ( a list of NO elements is
called “an empty list”)

Operations on a List
List() -- construct an empty list
List(const List &rhs) -- construct a list as a copy of rhs
~List() -- destroy the list
const List &operator=(const List &rhs)

– make this list contain copies of the elements of rhs in
the same order

– elements are deep copied from rhs, not used directly. If
L1 = (A1, A2, A3) and L2 = (B1, B2) before the
assignment, then L1  = L2 causes L2 = (A1, A2, A3)
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Operations on a List (cont)
Bool isEmpty() const -- returns true if the list size is zero
void makeEmpty() -- causes the list to become empty
void remove (const Object &x)

– the first occurrence of x is removed from the list, if it is
present. If x is not present, the list is unchanged.

– an occurrence of x is an element Ai of the list such that
Ai == x

Also:
insert
find
findPrevious

Iterators
An iterator is an object that provides access to the elements

of a collection (in a specified order) without exposing the
underlying structure of the collection.
– order dictated by the iterator
– collection provides iterators on demand
– each iterator on a collection is independent
– iterator operations are generic
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Iterator Operations
Bool isPastEnd() -- returns true if the iterator is past the end

of the list

void advance() -- advances the iterator to the next position in
the list. If iterator already past the end, no change.

const Object &retrieve() -- returns the element in the list at
the current position of the iterator.  It is an error to invoke
“retrieve” on an iterator that isPastEnd

List Operations
ListIter<Object> first() -- returns an iterator representing the

first element on the list

List Iter<Object> zeroth() -- returns an iterator representing
the header of a list

ListIter<Object> find(const Object &x) -- returns an iterator
representing the first occurrence of x in the list. If x not
present, the iterator isPastEnd.

ListIter<Object> findPrevious(const Object &x) -- returns an
iterator representing the element before x in the list. If x is
not in the list, the iterator represents the last element in the
list. If x is first element (or list is empty), the iterator
returned is equal to the one returned by zeroth().



11

List Operators (cont)
void insert (const Object &x, const listIter<Object> &p)

– inserts a copy of x in the list after the element referred
to by p

– if p isPastEnd, the insertion fails without an indication
of failure.

Ex: Building a List
List<int> list;  // empty list of int
ListIter<int> iter = list.zeroth();
for (int i=0; i < 5; i++) {

list.insert(iter);
iter.advance();
}
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Ex: Building a List #2
List<int> list;  // empty list of int
ListIter<int> iter = list.zeroth();
for (int i=0; i < 5; i++) {

list.insert(iter);
}

Ex:


