CMSC 341
Lecture4

Announcements

Example

Code:
sunml = O;
for (k=1; k<=n; k*=2)
for (j=1; j<=n; j++)

suml++;
Complexity:
Code:
sunm? = 0;

for (k=1; k<=n; k*=2)
for (j=1; j<=k; j++)
sunm++;
Complexity:

Some Questions

1. Is upper bound the same as worst case?

2. Does lower bound happen with shortest input?

3. What if there are multiple parameters?

Ex: Rank order of p pixelsin c colors

for (i =0; i <c; i++)
count[1] = O;

for (i =0; i <p; i++)
count [val ue(i)] ++;

sort (count)

Space Complexity

Does it matter?
What determines space complexity?
How can you reduce it?

What tradeoffs are involved?

Constants in Bounds

Theorem:
O(cf(x) = O(f(x))
Proof:
— T(x) = O(cf(x)) implies that there are constants c, and
n, such that T(X) £ cy(cf(x)) whenx 3 n,
— Therefore, T(x) £ ¢,(f(x)) when x 3 n,where c, = c,C
— Therefore, T(x) = O(f(X))

Sum in Bounds

Theorem:
Let T,(n) = O(f(n) and T,(n) = O(g(n)).
Then T,(n) + T,(n) = O(max(f(n),g(n)).
Proof:
— From the definition of O, T,(n) £ c,f (n) for n3 n, and
T,(n) £ c,g(n) forn3 n,
— Let ny = max(n, n,).
— Then, for n3 n, T,(n) + T,(n) £ c,f (n) + c,0(N)
— Let 3= max(c; C,).
— Then, T,(n) + T,(n) £ ¢;f () + ;9 ()

£ 2c;max(f (), g (n))
£ cmax(f (n), g (n)

Products in Bounds

Theorem:
Let Ty(n) = O(f(n) and T,(n) = O(g(n)).
Then T,(n) T,(n) = O(f(n),g(n)).
Proof:
— Ty(n) To(n) £ ¢, &f (n) g(n) whenn@ ng
— Therefore, T,(N)T,(n) = O(f(n),g(n)).

Polynomials in Bounds

Theorem:
If T (n) isapolynomial of degree x, then T(n) = O(n*).

Proof:
— T(n)=n*n*1+ ... +kisapolynomial of degree x.
— By the sumrule, the largest term dominates.
— Therefore, T(n) = O(nX).

L’ Hospital’s Rule

Finding limit of ratio of functions as variable approaches ¥

ot (%)
M g =M g)

Use to determine O or W ordering of two functions

f(x = O(g(¥)) if lim g} =

f(x

f(x) = Wg(x)) if 1im g4 =°

<

Polynomials of Logarithmsin Bounds

Theorem:
Ig*n = O(n) for any positive constant k
Proof:
— Note that Igknmeans (Ig n)k.
— Need to show Igkn £ cnfor n3 n,. Equivalently, can
show Ig n £ cnYk
— Letting a= 1/k, we will show that Ig n = O(n?) for any
positive constant a. Use L’ Hospital’ srule:

lge
lim Ign_ lim _ lim ¢, _

n® ¥cn® n® ¥acn®*' n® ¥n®
Ex: 1g000000(n)=0(n)

Polynomials vs Exponentials in Bounds

Theorem:
nk=0(a") fora>1
Proof:
— UseL’Hospital’srule
lim np* _ lim kn*!
n® ¥a" n® ¥ a"lna
_lim k(k- 1n*2
"n®¥ a'ln’a
_lim k(k-1)...1
n® ¥ a'ln*a
=0

Ex: n1000000 = O(1.00000001")

Relative Orders of Growth

n (linear)

logknfor k < 1

constant

n* for k > 0 (polynomial)
2" (exponential)

nlogn

logkn for k > 1

nkfork <1

logn

Relative Orders of Growth

constant
logkn for k> 1

logn

nkfork <1

n (linear)

nlogn

n* for k > 0 (polynomial)
2" (exponential)

List ADT (expanded from Weiss)

A list isadynamic ordered tuple of homogeneous elements
Ay, Ay A, ..., Ay
where A, is the ith element of the list

Definition: The position of element A, isi; positions range
from1to N inclusive

Definition: Thesize of alistisN (alist of NO elementsis
called “an empty list”)

Operationson alList

List() -- construct an empty list

List(const List &rhs) -- construct alist as acopy of rhs
~List() -- destroy the list

const List &operator=(const List &rhs)

— make thislist contain copies of the elements of rhsin
the same order

— elements are deep copied fromrhs, not used directly. If
L, =(A, Ay, Ay and L, = (B, B,) beforethe
assignment, thenL; =L, causesL, = (A, A, Ay)

Operations on a List (cont)

Bool isEmpty() const -- returnstrueif the list sizeis zero
void makeEmpty() -- causes the list to become empty
void remove (const Object &Xx)

— thefirst occurrence of x isremoved from thelist, if it is
present. If x isnot present, the list is unchanged.

— an occurrence of x isan element A, of the list such that

A, ==X
Also:
insert
find
findPrevious

Iterators

Aniterator is an object that provides access to the elements
of acollection (in a specified order) without exposing the
underlying structure of the collection.

— order dictated by the iterator

— collection providesiterators on demand

— each iterator on a collection is independent
— iterator operations are generic

Iterator Operations

Bool isPastEnd() -- returnstrue if theiterator is past the end
of the list

void advance() -- advances the iterator to the next positionin
thelist. If iterator already past the end, no change.

const Object &retrieve() -- returns the element in the list at
the current position of theiterator. It isan error to invoke
“retrieve” on aniterator that isPastEnd

List Operations

Listlter<Object> first() -- returns an iterator representing the
first element on the list

List Iter<Object> zeroth() -- returns an iterator representing
the header of alist

Listlter<Object> find(const Object &) -- returns an iterator
representing the first occurrence of x in the list. If x not
present, the iterator isPastEnd.

Listlter<Object> findPrevious(const Object &X) -- returnsan
iterator representing the element before x inthelist. If x is
not in the list, the iterator represents the last element in the
list. If x isfirst element (or list is empty), theiterator
returned is equal to the one returned by zeroth().

10

List Operators (cont)

void insert (const Object &Xx, const listlter<Object> &p)
— insertsacopy of x inthe list after the element referred
tobyp
— if pisPastEnd, the insertion fails without an indication
of failure.

Ex: Building a List

List<int> list; // enpty list of int
Listlter<int> iter = list.zeroth();
for (int i=0; i <5; i++) {
list.insert(iter);
i ter.advance();

}

Ex: Building aList #2

List<int> list; // enpty list of int

Listlter<int> iter = list.zeroth();

for (int i=0; i <5; i++) {
list.insert(iter);

}

12

