
1

CMSC 341
Lecture 12

Hash Table

 0 1 2 m-1
Basic Idea

– an array in which items are stored
– storage index for an item determined by a hash function

h(k): U → {0, 1, … , m-1}

Desired Properties of h(k)
– easy to compute
– uniform distribution of keys over {0, 1, … , m}

• when h(k1) = h(k2) for k1, k2 ∈ U , we have a collision

2

Division Method
The function:

h(k) = k mod m
where m is the table size.

M must be chosen to spread keys evenly.
– Ex: m = a factor of 10
– Ex: m = 2b, b> 1

A good choice of m is a prime number.
Also we want the table to be no more than 80% full.

– Choose m as smallest prime number greater than mmin,
where mmin = (expected number of entries)/0.8

Multiplication Method
The function

h(k) = m(kA - kA)
where A is some real positive constant.

A very good choice of A is the inverse of the “golden rule.”
Given two positive numbers x and y, the ratio x/y is the

golden ratio if
φ = x/y = (x+y)/x

The golden ratio:
x2 - xy - y2 = 0 ⇒ φ2 - φ - 1 = 0
φ = (1 + sqrt(5))/2 = 1.618033989…

~= Fibi/Fibi-1

3

Multiplication Method (cont.)
Because of the relationship of the golden ratio to Fibonacci

numbers, this particular value of A in the multiplication
method is called “Fibonacci hashing.”

Some values of
h(k) = m(k φ-1 - k φ-1)

= 0 for k = 0
= 0.618m for k = 1 (φ-1 = 1/ 1.618… = 0.618…)
= 0.236m for k = 2
= 0.854m for k = 3

 = 0.472m for k = 4
= 0.090m for k = 5
= 0.708m for k = 6
= 0.326m for k = 7
= …
= 0.777m for k = 32

Non-integer Keys
In order to has a non-integer key, must first convert to a

positive integer:
h(k) = g(f(k)) with f: U → int

g: I → {0 .. m-1}/2
Suppose the keys are strings. How can we convert a string (or

characters) into an integer value?

4

int hash(const string &key, int tablesize) {
int hashval = 0;

// f(k) by Horner’s rule
for (int i = 0; i < key.length(); i++)

hashval = 37*hasval + key[i];

// g(k) by division method
hashval %= tablesize;
if (hashval < 0)
hashval += tablesize;

return hashval;
}

HashTable Class
template <class HashedObj>
class HashTable {
public:

explicit HashTable(const HashedObj) ¬Found, size=101);
HashTable(const HashTable &rhs) :
ITEM_NOT_FOUND(rhs.ITEM_NOT_FOUND),theLists(rhs.theLists){
}
const HashedObj &find(const HashedObj &x) const;
void makeEmpty();
void insert (const HashedObj &x);
void remove (const HashedObj &x);
const HashTable &operator=(const HashTable &rhs);

private:
vector<List<HashedObj>> theLists;
const HashedObj ITEM_NOT_FOUND;

};

5

Hash Table Ops
const HashedObj &find(const HashedObj &x)
const;
– returns the HashedObj in the table, if present
– otherwise, returns ITEM_NOT_FOUND

void insert (const HashedObj &x);
– if x already in table, do nothing.
– otherwise insert it, using the appropriate hash func

void remove (const HashedObj &x);
– remove the instance of x, if x is present
– otherwise, does nothing

void makeEmpty();

Handling Collisions
Collisions are inevitable. How to handle them?

One possibility: separate chaining (aka open hashing)
– store colliding items in a list
– if m is large enough, list lengths are small

Insertion of key k
– hash(k) to find bucket
– if k is on that this, do nothing. Else, insert k on that list.

Asymptotic performance
– if always inserted at head of list, and no duplicates,

insert = O(1): best, worst, average

6

Find Performance
Find

– hash k to find the bucket
– do a find on that list, returns a listItr
– if itr.isPastEnd(), return ITEM_NOT_FOUND,

otherwise, return itr.retrieve()
Performance

– best:

– worst:

– average

Remove Performance
Remove k from table

– hash k to find bucket
– remove k from list

Performance
– best

– worst

– average

