
Recursion

Great fleas have little fleas upon their 
backs to bite 'em,

And little fleas have lesser fleas, and 
so ad infinitum.

And the great fleas themselves, in turn, 
have greater fleas to go on;

While these again have greater still, 
and greater still, and so on.



Recurrence Relationships

A large number of interesting objects are defined by recurrence relationships. 
For example,
a) Factorials: n! = 1 when n=0,  and n*(n-1)! when n > 0
b) Greatest Common Divisor(GCD) of a, b; (assume a>b)

if b==0, then GCD(a, b) = a; otherwise, if b==1, GCD(a, b) = 1; 
otherwise GCD(a, b) = GCD(b, a%b))

c) Fibonacci numbers F(0) =0,  F(1) = 1; when n>1, F(n) = F(n-1)+F(n-2)
d) A Tree is a set of nodes; if the set is not empty, there is a distinguished  

node called the root ; and attached to it are zero or more subtrees.
e) A LIST is either

– The empty list which contains no elements, or
– An element known as first, followed by a list. 

These definitions are all self-referential. Each of the objects is defined in terms 
of itself. Such items are easily dealt with by recursive functions.



Example: The Factorial function

A recursive function for computing x!

int factorial (int x) {
if (x ==0) return 1; //base case
return x * factorial (x – 1); //recurrence case

}
This function illustrates all the important ideas of recursion

• A base (or stopping) case 
– Code first tests for stopping condition (is  x ==0 ?)

– Provides a direct (non-recursive) solution for the base case, (0! = 1)

• The recurrence case
– Expresses solution to problem in 2 (or more) smaller parts

– Invokes itself (factorial) to compute (at least one of) the smaller parts



Trace of a call to Factorial: int z = factorial(4)

factorial(4)=
4 * factorial(3)

We cant evaluate 
1! directly – call 
factorial(1)

We cant evaluate 
2! Directly, so we 
call factorial(2)

We can’t evaluate 3! 
directly, so we call 
factorial (3)

We must call 
factorial(0) BASE CASE:

factorial(0)= 1
Returns 1 

and terminates

Returns 1*1  

and terminates

Returns 2*1 =2

and terminates

Returns 3*2 = 6 and 
terminates

finally, factorial(4) computes  4*6, returns 24, and termi nates

factorial(3)=
3 * factorial(2)

factorial(1)=
1 * factorial(0)

factorial(2)=
2 * factorial(1)



Example 2: count zeros in an ArrayList
The problem is: given an ArrayList of integers,how many of its elements are 

zero?
Thinking about the problem:
Suppose we examine just the last element of the ArrayList. If it’s zero, then the 

total number of zeros is just one more than the number of zeros in the rest of 
the ArrayList; otherwise, the total is the same as the number of zeros in the
rest of the ArrayList.
All we need to know is the position of the last element and the number of 
zeros in the rest of the ArrayList. Also, our knowledge of Java tells us that 
the first position of an ArrayList is position [0] 

We can sketch a solution as follows:
int countZeros( ArrayList A, int lastPosition){

if (A[ lastPosition ] == 0) 
return 1 + count of zeros in the rest of the ArrayL ist;

else
return  count of zeros in the rest of the ArrayList ;

}



Coding the recurrence relationship, then, will need the index of the last 
element of the ArrayList we are examining. Each recursive call will 
be to the next lower position in the ArrayList.

We need to identify a base case, and that is an ArrayList with just 1 
element.

Putting these ideas together, our finished code is:

int countZeros( ArrayList<Integer> A, int lastPositio n)
{

// base case
if ( lastPosition == 0 ) return A[0] == 0 ?  1 :  0;

//recurrence
if ( A[ lastPosition ] == 0 ) 

return 1 +  countZeros( A, lastPosition – 1 );
else

return   countZeros( A, lastPosition – 1 );
}



Example 3: Another way to count zeros
We may also think of an ArrayList as having 2 halves: the number of zeros in 

the ArrayList is just the sum of the zeros in the two halves. We will 
recursively count the zeros in a “piece” of the ArrayList by splitting it in 
halves and summing the counts of zeros in each half. As before, the base 
case arises when the function examines just 1 element. We need the 
recursive function to receive as parameters the positions of the first and last 
elements of the piece of the ArrayList being examined.

int CountZeros2( ArrayList<Integer> A, int lowIndex, int highIndex)
{

// base case occurs when lowIndex and highIndex are equal; 
if ( lowIndex == highIndex ) return A[ lowIndex ] ==  0 ? 1 :  0;

// recurrence part requires us to count the zeros in each half, and add them:
int mid = (lowIndex + highIndex)/2;
return 

CountZeros2(A, lowIndex, mid) + CountZeros(a, mid+1 , highIndex)
}



Writing Recursive Functions

If we happen to have the recurrence relationship, then writing a recursive 
function to implement it is largely a mechanical process:

1. Test first for the base case. If it is true, provide a solution for the base 
case and STOP 

2. Split the problem into (at least) 2 parts, one (or possibly both) of which is 
similar in form to the original problem. 

That is about all there is to writing a recursive function, and to write it correctly, 
we must ensure that the function terminates:

3: Guarantee that eventually, the subparts will reach the base case. 
Otherwise, your code may run forever (or until it crashes, whichever 
comes first)



Nonterminating Recursive Function

These are ill-formed versions of the factorial function:

int BadFactorial(int x) 

{
return x * BadFactorial(x-1); //Oops! No Base Case

}

int AnotherBadFactorial(int x)

{

if (x == 0) return 1;
return x* (x-1) *  AnotherBadFactorial(x -2);

//Oops! When x is odd, we never reach the base case!! 

}



Linear and tree recursion

The factorial function and the first version of counting zeros are said to be 
linear recursive functions. A function is linear recursive when no pending 
operation involves another recursive function call (to the same function). For 
example, the pending operation in fact is a multiplication. 

The second count of zeros (countzeros2) requires another recursive function 
call. This example requires a second function call along with the pending 
operation (addition). When a recursive function requires at least 1 (or more) 
recursive call to evaluate the pending function, then it is called tree 
recursive .



Pending Operations and Tail Recursion
The  functions we just examined  required us to do something after the 

recursive function returned a value; they needed to perform an addition or 
multiplication. When a recursive function has operations that are performed 
after the recursive call returns, the function is said to have pending 
operations.

A recursive function with no pending operations after the recursive call 
completes is defined to be tail recursive. It is desirable to have tail-
recursive functions, because 

a) the amount of information that gets stored during computation is 
independent of the number of recursive calls, and

b) some compilers can produce optimized code that replaces tail recursion  
by iteration (saving the overhead of the recursive calls)

From these definitions, it is clear that tree recursive functions can’t be tail 
recursive.

It is possible to rewrite a non-tail-recursive function as tail recursive  We will 
need to keep track of intermediate results, instead of letting the recursive 
call mechanism do that for us.



Converting Recursion to Tail-recursion

The general idea is to use an auxiliary parameter to hold intermediate results, 
and to incorporate the pending operation by suitably manipulating the 
auxiliary parameter. It is usually convenient to introduce an auxiliary 
function - the reason for this is to keep the user interface simpler – the user 
of the function doesn’t need to provide an auxiliary parameter. 

For Factorial(x), the pending operation is to multiply the value of factorial(x-1) 
by x; This suggests initializing the pending value to 1, and multiplying this by 
the parameter x.  

When we do so, we get this version of x!



A tail-recursive Factorial Function

We will use indirect recursion and an auxiliary function to rewrite 
factorial as tail-recursive: int factAux (int x, int result) {

if (x==0) return result;
return factAux(x-1, result * x);

}
int tailRecursiveFact( int x) {

return factAux (n, 1);
}
It’s important to see that we have removed the pending operation by

using an intermediate variable, the parameter result , to keep track 
of the partial computation of x! – this results in a tail-recursive 
function



Equivalence of recursion, while loops

We can rewrite any recursive function as an iterative function (using a for- or 
while loop). An iterative factorial function is 

int iterativeFact( int x) {

int result = 1;

for (int i = 1; i <= x; ++i)

result *= I;

return result; 

}

how can we get from the recursive function to the iterative one?



Tail Recursion to Iterative functions
A tail recursive function has this form
F(x) {

if (baseProperty) 
return G(x) // whatever we do in base case

return F(H(x)); //H(x) is the work done in the recursive case

We can mechanically derive an iterative version:
F(x){

int temp = x;
while (! BaseProperty) {

temp = x;
x = H(temp);

}
return G(x);

}
(thanks to Tom Anastasio for this idea)



Review Problems:

1. Using the definition given for fibonacci function, write a recursive function 
to compute F(n)

2. Rewrite the function you wrote in 1 as a tail-recursive function

3. Rewrite the tail-recursive function you wrote in 2 as an iterative function

4. (very hard) what is the run-time efficiency (big Oh) for each of the 
functions you wrote?

5. Trace the calls (as was done for factorial) to evaluate F(5) for each of the 
3 functions you wrote above. How many times did your function call F(1)?

6. Define tail recursion, base case, recurrence relation, and tree recursion.

7. When should a recursive function test for the base case? Why?


