Graph Theory

Chapter 9

Graphs

* A graph consists of nodes and edges

+ The set of all nodes (or vertices) in a

graph is V

* The set of all edges in a graph is E

+ Bach edge connects one or two vertices
(called its” endpoints)

* A graph is formally represented (V, E)

* We will (usually) stick to simple graphs

Simple Graphs

* No loops
* Endpoints of an edge are distinct
* No multiple edges

+ between the same two vertices

CA

Directed Graphs

* A directed edge, or arc connects two
vertices, but has a start and end

* Formally an arc (1, v) starts at u
and ends at v

* A graph with directed edges is a
directed graph or digraph

Seven Bridges of Konigsberg

A :.": 1 .'l ‘. ‘.'./ :
s R RS B dp -”%rﬁ"‘i’
W 9 ol oy Sty

gV an LU ‘ uqc*m oD i\
‘ h bkl phama el

,* '}xn'

ITraveling Salesman Problem

_—

|

Norith
Sea

Dusseldorf *Ka
= ssel
oln

Frankfurt
am Main

\
LUX, %
urnberg
¥ o B
FRANCE |
ol k;\&/" s,
- . Zugspitze

SWITZ. [

. -|£Cf‘ A:‘

Cy—-

POL.

{

SO
CZECH
REPUBLIC

T d (Sreeerd

N

1,

AUSTRIA
0 50 100 km
—_t

0 5 100 mi

50

25

lerminology

* Two vertices u and v in an undirected
graph G are neighbors if there exists an
edge e in G which connects u, and v

* Equivalently, u and v are said to be
adjacent if there exists an edge which

CA
connects them

* The set of all neighbors of u (u’s
neighborhood) is N(u)

* This is defined similarly for sets of
vertices

NY

Degree

: CA
* If an edge e has vertex u as one of its’

endpoints, ¢ is incident with u

* The degree of a node u, deg(u), is the
count of the number of edges
incident with u

* A node with degree 0 is isolated)

NY

VT

©

ON O,

(=)

In/Out -Degree

+ In directed graphs, separate degrees

* In-Degree: # of edges ending at u
deg (1)

* Qut-Degree: # of edges starting at u
deg*(u)

* Vertices with in-degree 0 are sources

* Vertices with out-degree 0 are sinks

E deg (v) = E deg”(v)=|E

veV veV

CA

Representations

10

Graph ADT

* V = set of vertices
E = set of edges

|

* Three operations
+ getDegree (u)
+ getAdjacent (u)

+ 1sAdjacentTo (u,

V)

11

Graph Representations

* Adjacency list
* For each vertex, list the adjacent vertices
* Good for sparse graphs with few edges
* Adjacency matrix
2D matrix of 1s and Os
* 1 iff there is an edge from i to j

* Good for dense graphs with many edges

12

Graph Representations

Graph Adjacency List Adjacency Matrix

1123|456

V| Adj
1,2,5
1,3,5
2,4
3,5,6
1,2,4
4

mm»-lswl\)r—A<

N O1T | =1 W | DN | =

Directed Graphs

Graph Adjacency List Adjacency Matrix

(o) V| Term | |VI[1]|2(314|5]6]|7
‘Q 1| 67 1
Q 2 | 56 D
‘0 3] 124 | |3
4| 57 4
‘ 5 1 5
6o 6
7 7

Practice

15

Practice

Performance of l.ast vs Matrix

Space getDegree (u) |i1sAdjacentTo (u, v) |getAdjacent (u)
Adj
L O(VHE) | O(D®w)) O(D(u)) O(D(u))
Ad]j
Y o | oW 0(1) o(V)

Matrix

‘7%

Paths

* A path (sometimes a walk) is a series of
edges which starts at a vertex, travels
from vertex to vertex along edges and
ends at some vertex

* Formally a path p is a set of edges s.t.
p.start = ep.start
p.end = e,.end
en.end = ey 1.start

* If p.start = p.end, then p is a circuit (cycle)

* If no edge is repeated, the path is simple

Cychie vs Acyclie

* Directed graphs can be cyclic or acyclic e
* Cyclic: contains a cycle @ e

* Acyclic: does not contain any cycles

Cycle Practice

Cycle Practice

How
many cycles are there?

e""
@w "'4’

Graph Search

Depth-First Search (DFS)

+ V1sit some start vertex

* Follow an edge to a vertex which hasn’t
been explored

+ Visit that vertex

* Follow an edge from that vertex to
another unexplored vertex

* If there are no edges to choose from,
backtrack to the previous vertex

Order visited: a, b, c, g, h,d, k,j, f, e, i, m, |

25

A Recursive DFS Algorithm

procedure DFS(G: connected graph with vertices v1, vy, ..., v4)
T := tree consisting only of the vertex v:f
visit(v1)

procedure visit(v: vertex of G)

for each vertex w adjacent to v and not yetin T
add vertex w and edge {v, w} to T
visit(w)

26

Practice

Breadth-First Search

+ Vi1sit some start vertex

* Visit all neighbors of the start vertex

* Visit all those neighbors” neighbors

* Repeat until all vertices visited

BES

Order visited: a, b, e, ¢, f,i,g,j, m h, k, 1, d

29

A (non-recursive) BES Algorithm

procedure BFS (G: connected graph with vertices vy, vy, ..., U4)
T := tree consisting only of vertex v,
L := empty list
put v1 in the list L of unprocessed vertices
while L is not empty
remove the first vertex, v, from L
for each neighbor w of v
if w is not in L and not in T then
add w to the end of the list L
add w and edge {v, wj to T

30

Shortest-Path Problems

Shortest Path

* Many problems try to find the shortest path
between two vertices

* The length of a path is the number of edges @ g, °
in it W
D (s @
INT/
* Flights with the fewest stopovers 6 14
2

A

1

* Driving directions with few instructions Q
/

* Can use DFS or BFS

52

Weighted Graphs

* Add a weight to every edge

* weights are normally “costs” 6

* Length of a path is the sum of the
weights of each edge

LA Miami

34

Dijkstra’s Algorithm

* Finds shortest path between X and Z in O(n?) time

* Greedy algorithm:

+ Start with C = {X}

* Search the neighbors of C to find next closest
node to X notin C

* Add it to C

* Repeat until Z is the next closest node to X

35

Dijkstra’s Algorithm

36

Dijkstra’s Algorithm

{X,b}, 4

10

¥k

Dijkstra’s Algorithm

{X,c,b}, 3

38

Dijkstra’s Algorithm

{X,c,b}, 3

39

Dijkstra’s Algorithm

{X,c,b}, 3

{X,c,b,d}, 8

d
6 (X,c,b,d,2}, 14

40

Dijkstra’s Algorithm

{X,c,b}, 3

{X,c,b,d}, 8

d
6 (X,c,b,de,z, 13

41

Dijkstra’s Algorithm

{X,c,b}, 3

{X,c,b,d}, 8

d
6 (X,c,b,de,z} 13

42

Practice

* Find the shortest path from ¢ to f
using Djikstra’s Algorithm

43

Connectivity

i

Network Rehability

* What would happen if my router in NY
went offline? It CA got knocked out?

* | often want there to always be a path
available between all the nodes in my

graph

CA

NY

45

Connectedness ©
(v

* Two nodes are connected if there exists a path
between them

* QOtherwise they are disconnected @

* If every pair of nodes in a graph is connected, then
the whole graph is connected

+ Otherwise it is disconnected

* If a graph is connected, then there exists a simple (VT)

path between every pair of vertices in the graph

Connected vs Disconnected

O
o ()—C
o

Connected
Components

* A part of a graph which is
disconnected from all other parts is
called a connected component

* Formally, a connected subgraph of G
which is not a proper subgraph of
any other connected subgraph of G is
a connected component

* A connected graph has 1 connected
component

* A disconnected graph has 2+

O
Directed Graphs O

* The underlying undirected graph of
a digraph is the same graph, minus °

directions

* A digraph is weakly connected if the e \
underlying undirected graph is

connected

* i.e. if the digraph is “in one piece” e

Strongly

(Connected

* A digraph G is strongly connected if for
every pair of vertices a,b € G, there exists a
path from a to b and from b to a

* Note: this includes the pair a,a

Practice

Strongly Connected Components

* Analogous to connected components

* Maximal subgraphs of G which are strongly connected
i.e. they are not contained within any other such strongly connected subgraphs

* We can compress a digraph into a directed acyclic graph by reducing it to a graph
of its strongly connected components

* Treat all nodes in a SCC as interchangeable

* Model how to hop from one SCC to another

o1

Strongly Connected Components

© 0.0 O
/A\

FKuler and Hamilton Paths/Cycles

Fuler Paths and Circuits

* Euler Path: path in G which uses every edge
exactly once

¢ can visit a node more than once

* Euler Circuit: Euler path which is also a
circuit

55

Practice

Practice

Hamilton Paths and Circuits

* Hamilton Path: path visiting every node
exactly once

* each edge can only be used once

* Hamilton Circuit: hamilton path which is
also a circuit

Practice

Traveling Salesperson Problem

Saginaw

* Traveling Salesperson Problem (TSP)

Grand Rapid
or Traveling Salesman Problem et P

@ 98

* Find the shortest hamilton cycle 56

(O Detroit

* 1.e. visiting every node once and
returning to the start Kalamazoo

/S

133

Toledo

60

Traveling Salesperson Problem

* This is an NP-hard problem
* There are (n - 1)!/2 Hamilton cycles
* O(n!) to compute exhaustively

* FedEx pays lots and lots of money
for improvements on this problem

* Often okay to find an
approximate solution

Route Total
D-T-GR-5-K-D 610
D-T-GR-K-5S-D 516
D-T-K-S-GR-D 588
D-T-K-GR-5-D 458
D-T-5-K-GR-D 540
D-T-5-GR-K-D 504
D-S-T-GR-K-D 598
D-S-T-K-GR-D 576
D-S-K-GR-T-D 682
D-S-GR-T-K-D 646
D-GR-S-T-K-D 670
D-GR-T-S-K-D 728

61

Spanning lrees

Section 9.5

62

Spanning Tree

Etna Old Town

Herman

T A Orono

Herman Bangor

+ Tree w/ every Hampden

vertex of G s

Finding Spanning 'Irees

O—@® f

* Trees are acyclic, graphs aren’t

* Remove edges to break up cycles

* Keep graph connected

64

Practice

Minimum Spanning Irees

* Weighted graphs

* Find spanning tree with the smallest
possible sum of edge weights

* Applications:

* Making connected graphs

a C d

® ® ®
3 5
e® @ ®h
4 3

® ®

66

Prim’s Algorithm

a 5 b 3 C 1 d
procedure Prim (G)
T := a minimum weight edge 3 : 5 5
fori:=1ton-2
e := an edge of minimum weight, 4 f 3 A 3
incident to a vertex in T, e
not forming a cyclein T
T := T with e added 4 2 4
return I

67

Kruskal's Algorithm

procedure Kruskal (G)
T := an empty graph
fori:=1ton-1 3 ’ 5
e := any edge of minimum weight in G,
not forming a cycle if added to T I 3
T := T with e added 5

return T

