
Chapter 9

Graph Theory

1

Graphs

2

✤ A graph consists of nodes and edges

✤ The set of all nodes (or vertices) in a
graph is V

✤ The set of all edges in a graph is E

✤ Each edge connects one or two vertices
(called its’ endpoints)

✤ A graph is formally represented (V, E)

✤ We will (usually) stick to simple graphs

CA MD PA AK

NY MA VT

Simple Graphs

✤ No loops

✤ Endpoints of an edge are distinct

✤ No multiple edges

✤ between the same two vertices

3

Directed Graphs

✤ A directed edge, or arc connects two
vertices, but has a start and end

✤ Formally an arc (u, v) starts at u
and ends at v

✤ A graph with directed edges is a
directed graph or digraph

4

5

Seven Bridges of Königsberg

Traveling Salesman Problem

6

CA MD PA AK

NY MA VT

Terminology

✤ Two vertices u and v in an undirected
graph G are neighbors if there exists an
edge e in G which connects u, and v

✤ Equivalently, u and v are said to be
adjacent if there exists an edge which
connects them

✤ The set of all neighbors of u (u’s
neighborhood) is N(u)

✤ This is defined similarly for sets of
vertices

7

Degree

✤ If an edge e has vertex u as one of its’
endpoints, e is incident with u

✤ The degree of a node u, deg(u), is the
count of the number of edges
incident with u

✤ A node with degree 0 is isolated

8

CA MD PA AK

NY MA VT

2 3 1 0

4 3 1

In/Out -Degree

✤ In directed graphs, separate degrees

✤ In-Degree: # of edges ending at u
deg-(u)

✤ Out-Degree: # of edges starting at u
deg+(u)

✤ Vertices with in-degree 0 are sources

✤ Vertices with out-degree 0 are sinks

9

CA MD PA AK

NY MA VT

1 2 2 1

1 2 1

2 1 0 1

4 1 0

deg−(v)
v∈V
∑ = deg+(v)

v∈V
∑ = E

Representations

10

Graph ADT

11

✤ V = set of vertices
E = set of edges

✤ Three operations

✤ getDegree(u)

✤ getAdjacent(u)

✤ isAdjacentTo(u, v)

Graph Representations

12

✤ Adjacency list

✤ For each vertex, list the adjacent vertices

✤ Good for sparse graphs with few edges

✤ Adjacency matrix

✤ 2D matrix of 1s and 0s

✤ 1 iff there is an edge from i to j

✤ Good for dense graphs with many edges

Graph Representations

13

V Adj.
1 1,2,5
2 1,3,5
3 2,4
4 3,5,6
5 1,2,4
6 4

V 1 2 3 4 5 6
1 1 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 1 0 0
4 0 0 1 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0

Graph Adjacency List Adjacency Matrix

Directed Graphs

14

7

6

5

4

3

1

2

V Term
1 6,7
2 5,6
3 1,2,4
4 5,7
5 1
6 4
7

V 1 2 3 4 5 6 7
1 0 0 0 0 0 1 1
2 0 0 0 0 1 1 0
3 1 1 0 1 0 0 0
4 0 0 0 0 1 0 1
5 1 0 0 0 0 0 0
6 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0

Graph Adjacency List Adjacency Matrix

Practice

15

e

c d

f

b

ga

Practice

16

b

c d

f

a

e

Performance of List vs Matrix

17

Space getDegree(u) isAdjacentTo(u,v) getAdjacent(u)

Adjacency
List O(V+E) O(D(u)) O(D(u)) O(D(u))

Adjacency
Matrix O(V2) O(V) O(1) O(V)

Paths

18

✤ A path (sometimes a walk) is a series of
edges which starts at a vertex, travels
from vertex to vertex along edges and
ends at some vertex

✤ Formally a path p is a set of edges s.t.
 p.start = e0.start
 p.end = en.end
 en.end = en+1.start

✤ If p.start = p.end, then p is a circuit (cycle)

✤ If no edge is repeated, the path is simple

Cyclic vs Acyclic

✤ Directed graphs can be cyclic or acyclic

✤ Cyclic: contains a cycle

✤ Acyclic: does not contain any cycles

19

Cycle Practice

20

Cycle Practice

21

How many cycles are there?

22

Graph Search

23

Depth-First Search (DFS)

✤ Visit some start vertex

✤ Follow an edge to a vertex which hasn’t
been explored

✤ Visit that vertex

✤ Follow an edge from that vertex to
another unexplored vertex

✤ If there are no edges to choose from,
backtrack to the previous vertex

24

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

DFS

25

a b c d

e f g h

i j k

l m

Order visited: a, b, c, g, h, d, k, j, f, e, i, m, l

A Recursive DFS Algorithm

procedure DFS(G: connected graph with vertices v1, v2, ..., vn)
T := tree consisting only of the vertex v1f
visit(v1)

procedure visit(v: vertex of G)
for each vertex w adjacent to v and not yet in T
 add vertex w and edge {v, w} to T
 visit(w)

26

Practice

27

b c d e

g h i j

l m n

a

f

k

Breadth-First Search

✤ Visit some start vertex

✤ Visit all neighbors of the start vertex

✤ Visit all those neighbors’ neighbors

✤ Repeat until all vertices visited

28

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

a b c d

e f g h

i j k

l m

BFS

29

a b c d

e f g h

i j k

l m

Order visited: a, b, e, c, f, i, g, j, m, h, k, l, d

A (non-recursive) BFS Algorithm

procedure BFS (G: connected graph with vertices v1, v2, ..., vn)
T := tree consisting only of vertex v1
L := empty list
put v1 in the list L of unprocessed vertices
while L is not empty
 remove the first vertex, v, from L
 for each neighbor w of v
 if w is not in L and not in T then
 add w to the end of the list L
 add w and edge {v, w} to T

30

Shortest-Path Problems

31

Shortest Path

32

✤ The length of a path is the number of edges
in it

✤ Many problems try to find the shortest path
between two vertices

✤ Flights with the fewest stopovers

✤ Driving directions with few instructions

✤ Can use DFS or BFS

Practice

33

Weighted Graphs

✤ Add a weight to every edge

✤ weights are normally “costs”

✤ Length of a path is the sum of the
weights of each edge

34

LA

NYC

Atlanta

Miami

Chicago

Vegas

Boston

SF 2:20

2:0
0

2:1
0

3:50

1:40

1:50

2:10
4:05 0:

50

1:5
5

2:45

1:30
1:15

2:55

LA

NYC

Atlanta

Miami

Chicago

Vegas

Boston

SF $89

$8
9

$6
9

$12
9

$99

$59

$79
$129 $3

9

$7
9

$99

$69
$39

$99

LA

NYC

Atlanta

Miami

Chicago

Vegas

Boston

SF 957

83
4

90
8

245
1

606

722

860
2534 19

1

76
0

1090

595
349

1855

Dijkstra’s Algorithm

✤ Finds shortest path between X and Z in O(n2) time

✤ Greedy algorithm:

✤ Start with C = {X}

✤ Search the neighbors of C to find next closest
node to X not in C

✤ Add it to C

✤ Repeat until Z is the next closest node to X
35

b d

c e

X Z

4
5

81

2
10

2

6

3

Dijkstra’s Algorithm

36

b d

c e

X Z

4
5

81

2
10

2

6

3

∞ ∞

∞

∞∞

{X}, 0

Dijkstra’s Algorithm

37

b d

c e

X Z

4
5

81

2
10

2

6

3

{X,b}, 4 ∞

∞

∞{X,c}, 2

{X}, 0

Dijkstra’s Algorithm

38

b d

c e

X Z

4
5

81

2
10

2

6

3

{X,c,b}, 3 {X,c,d}, 10

∞

{X,c,e}, 12{X,c}, 2

{X}, 0

Dijkstra’s Algorithm

39

b d

c e

X Z

4
5

81

2
10

2

6

3

{X,c,b}, 3 {X,c,b,d}, 8

∞

{X,c,e}, 12{X,c}, 2

{X}, 0

Dijkstra’s Algorithm

40

b d

c e

X Z

4
5

81

2
10

2

6

3

{X,c,b}, 3 {X,c,b,d}, 8

{X,c,b,d,Z}, 14

{X,c,b,d,e}, 10{X,c}, 2

{X}, 0

Dijkstra’s Algorithm

41

b d

c e

X Z

4
5

81

2
10

2

6

3

{X,c,b}, 3 {X,c,b,d}, 8

{X,c,b,d,e,Z}, 13

{X,c,b,d,e}, 10{X,c}, 2

{X}, 0

Dijkstra’s Algorithm

42

b d

c e

X Z

4
5

81

2
10

2

6

3

{X,c,b}, 3 {X,c,b,d}, 8

{X,c,b,d,e,Z}, 13

{X,c,b,d,e}, 10{X,c}, 2

{X}, 0

Practice

✤ Find the shortest path from g to f
using Djikstra’s Algorithm

43

Connectivity

44

Network Reliability

45

✤ What would happen if my router in NY
went offline? If CA got knocked out?

✤ I often want there to always be a path
available between all the nodes in my
graph

CA MD PA AK

NY MA VT

Connectedness

46

✤ Two nodes are connected if there exists a path
between them

✤ Otherwise they are disconnected

✤ If every pair of nodes in a graph is connected, then
the whole graph is connected

✤ Otherwise it is disconnected

✤ If a graph is connected, then there exists a simple
path between every pair of vertices in the graph

CA

MD PA

AK

NY

MA

VT

Connected vs Disconnected

47

4

2 1

3

5

4

2 1

3

5

Connected
Components
✤ A part of a graph which is

disconnected from all other parts is
called a connected component

✤ Formally, a connected subgraph of G
which is not a proper subgraph of
any other connected subgraph of G is
a connected component

✤ A connected graph has 1 connected
component

✤ A disconnected graph has 2+
48

4

2 1

3

5

Directed Graphs

49

✤ The underlying undirected graph of
a digraph is the same graph, minus
directions

✤ A digraph is weakly connected if the
underlying undirected graph is
connected

✤ i.e. if the digraph is “in one piece”

7

6

5

4

3

1

2

7

6

5

4

3

1

2

Strongly
Connected

✤ A digraph G is strongly connected if for
every pair of vertices a,b ∈ G, there exists a
path from a to b and from b to a

✤ Note: this includes the pair a,a

50

a

e

b

d

c

a

e

b

d

c

Practice

51

f

c d

g

b

he

a

Strongly Connected Components

52

✤ Analogous to connected components

✤ Maximal subgraphs of G which are strongly connected
i.e. they are not contained within any other such strongly connected subgraphs

✤ We can compress a digraph into a directed acyclic graph by reducing it to a graph
of its strongly connected components

✤ Treat all nodes in a SCC as interchangeable

✤ Model how to hop from one SCC to another

Strongly Connected Components

53

f

c d

g

b

he

a

f

c d

g

b

he

a

Euler and Hamilton Paths/Cycles

54

Euler Paths and Circuits

55

✤ Euler Path: path in G which uses every edge
exactly once

✤ can visit a node more than once

✤ Euler Circuit: Euler path which is also a
circuit

Practice

56

a b

d c

e

a b

d c

e

a b

d c e

Practice

57

a b

d c

a

g

c

d

f

e

b

a b

d c

Hamilton Paths and Circuits

✤ Hamilton Path: path visiting every node
exactly once

✤ each edge can only be used once

✤ Hamilton Circuit: hamilton path which is
also a circuit

58

Practice

59

a b

e c

d

a b

d c

a

b

d

c

e fg

Traveling Salesperson Problem

✤ Traveling Salesperson Problem (TSP)
or Traveling Salesman Problem

✤ Find the shortest hamilton cycle

✤ i.e. visiting every node once and
returning to the start

60

Grand Rapids

Saginaw

Detroit

Kalamazoo

Toledo

135

133

142

58

98
137

113

56

147

167

Traveling Salesperson Problem

✤ This is an NP-hard problem

✤ There are (n - 1)!/2 Hamilton cycles

✤ O(n!) to compute exhaustively

✤ FedEx pays lots and lots of money
for improvements on this problem

✤ Often okay to find an
approximate solution

61

Route Total
Distanc

e
D - T - GR - S - K - D 610
D - T - GR - K - S - D 516
D - T - K - S - GR - D 588
D - T - K - GR - S - D 458
D - T - S - K - GR - D 540
D - T - S - GR - K - D 504
D - S - T - GR - K - D 598
D - S - T - K - GR - D 576
D - S - K - GR - T - D 682
D - S - GR - T - K - D 646
D - GR - S - T - K - D 670
D - GR - T - S - K - D 728

Section 9.5

Spanning Trees

62

Spanning Tree

63

Etna Old Town

Herman

Hampden

Bangor

Orono Etna Old Town

Herman

Hampden

Bangor

Orono

 Spanning Tree
 Tree w/ every

 vertex of G

Finding Spanning Trees

✤ Trees are acyclic, graphs aren’t

✤ Remove edges to break up cycles

✤ Keep graph connected

64

a b c d

e f g

Practice

65

b c d e

g h i j

l m n

a

f

k

Minimum Spanning Trees

✤ Weighted graphs

✤ Find spanning tree with the smallest
possible sum of edge weights

✤ Applications:

✤ Making connected graphs

66

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

Prim’s Algorithm

procedure Prim (G)
T := a minimum weight edge
for i := 1 to n - 2
 e := an edge of minimum weight,
 incident to a vertex in T,
 not forming a cycle in T
 T := T with e added
return T

67

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

Kruskal’s Algorithm

procedure Kruskal (G)
T := an empty graph
for i := 1 to n - 1
 e := any edge of minimum weight in G,
 not forming a cycle if added to T
 T := T with e added
return T

68

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

a b c d

e

i j k l

f g
h

2 3 1

3

5213

4 3

3

4 2

3

4

1

3

