
Chapter 9

Graph Theory
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Graphs
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✤ A graph consists of nodes and edges

✤ The set of all nodes (or vertices) in a 
graph is V

✤ The set of all edges in a graph is E

✤ Each edge connects one or two vertices 
(called its’ endpoints)

✤ A graph is formally represented (V, E)

✤ We will (usually) stick to simple graphs
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Simple Graphs

✤ No loops

✤ Endpoints of an edge are distinct

✤ No multiple edges 

✤ between the same two vertices
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Directed Graphs

✤ A directed edge, or arc connects two 
vertices, but has a start and end

✤ Formally an arc (u, v) starts at u 
and ends at v

✤ A graph with directed edges is a 
directed graph or digraph
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Seven Bridges of Königsberg



Traveling Salesman Problem
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Terminology

✤ Two vertices u and v in an undirected 
graph G are neighbors if there exists an 
edge e in G which connects u, and v

✤ Equivalently, u and v are said to be 
adjacent if there exists an edge which 
connects them

✤ The set of all neighbors of u (u’s 
neighborhood) is N(u)

✤ This is defined similarly for sets of 
vertices
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Degree

✤ If an edge e has vertex u as one of its’ 
endpoints, e is incident with u

✤ The degree of a node u, deg(u), is the 
count of the number of edges 
incident with u

✤ A node with degree 0 is isolated
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In/Out -Degree

✤ In directed graphs, separate degrees

✤ In-Degree: # of edges ending at u
deg-(u)

✤ Out-Degree: # of edges starting at u
deg+(u)

✤ Vertices with in-degree 0 are sources

✤ Vertices with out-degree 0 are sinks
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Representations
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Graph ADT
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✤ V = set of vertices
E = set of edges

✤ Three operations

✤ getDegree(u)

✤ getAdjacent(u)

✤ isAdjacentTo(u, v)



Graph Representations
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✤ Adjacency list

✤ For each vertex, list the adjacent vertices

✤ Good for sparse graphs with few edges

✤ Adjacency matrix

✤ 2D matrix of 1s and 0s

✤ 1 iff there is an edge from i to j

✤ Good for dense graphs with many edges



Graph Representations
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V Adj.
1 1,2,5
2 1,3,5
3 2,4
4 3,5,6
5 1,2,4
6 4

V 1 2 3 4 5 6
1 1 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 1 0 0
4 0 0 1 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0

Graph Adjacency List Adjacency Matrix



Directed Graphs
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V Term
1 6,7
2 5,6
3 1,2,4
4 5,7
5 1
6 4
7

V 1 2 3 4 5 6 7
1 0 0 0 0 0 1 1
2 0 0 0 0 1 1 0
3 1 1 0 1 0 0 0
4 0 0 0 0 1 0 1
5 1 0 0 0 0 0 0
6 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0

Graph Adjacency List Adjacency Matrix



Practice
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16

b

c d

f

a

e



Performance of List vs Matrix
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Space getDegree(u) isAdjacentTo(u,v) getAdjacent(u)

Adjacency
List O(V+E) O(D(u)) O(D(u)) O(D(u))

Adjacency
Matrix O(V2) O(V) O(1) O(V)



Paths
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✤ A path (sometimes a walk) is a series of 
edges which starts at a vertex, travels 
from vertex to vertex along edges and 
ends at some vertex

✤ Formally a path p is a set of edges s.t.
    p.start = e0.start
    p.end = en.end
    en.end = en+1.start

✤ If p.start = p.end, then p is a circuit (cycle)

✤ If no edge is repeated, the path is simple



Cyclic vs Acyclic

✤ Directed graphs can be cyclic or acyclic

✤ Cyclic: contains a cycle

✤ Acyclic: does not contain any cycles
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Cycle Practice
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Cycle Practice
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How many cycles are there?
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Graph Search
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Depth-First Search (DFS)

✤ Visit some start vertex

✤ Follow an edge to a vertex which hasn’t 
been explored

✤ Visit that vertex

✤ Follow an edge from that vertex to 
another unexplored vertex

✤ If there are no edges to choose from, 
backtrack to the previous vertex
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DFS
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A Recursive DFS Algorithm

procedure DFS(G: connected graph with vertices v1, v2, ..., vn)
T := tree consisting only of the vertex v1f
visit(v1)

procedure visit(v: vertex of G)
for each vertex w adjacent to v and not yet in T
     add vertex w and edge {v, w} to T
     visit(w)
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Practice
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Breadth-First Search

✤ Visit some start vertex

✤ Visit all neighbors of the start vertex

✤ Visit all those neighbors’ neighbors

✤ Repeat until all vertices visited
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BFS
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A (non-recursive) BFS Algorithm

procedure BFS (G: connected graph with vertices v1, v2, ..., vn)
T := tree consisting only of vertex v1
L := empty list
put v1 in the list L of unprocessed vertices
while L is not empty
     remove the first vertex, v, from L
     for each neighbor w of v
          if w is not in L and not in T then
               add w to the end of the list L
               add w and edge {v, w} to T
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Shortest-Path Problems
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Shortest Path
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✤ The length of a path is the number of edges 
in it

✤ Many problems try to find the shortest path 
between two vertices

✤ Flights with the fewest stopovers

✤ Driving directions with few instructions

✤ Can use DFS or BFS



Practice
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Weighted Graphs

✤ Add a weight to every edge

✤ weights are normally “costs”

✤ Length of a path is the sum of the 
weights of each edge
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Dijkstra’s Algorithm

✤ Finds shortest path between X and Z in O(n2) time

✤ Greedy algorithm:

✤ Start with C = {X}

✤ Search the neighbors of C to find next closest 
node to X not in C

✤ Add it to C

✤ Repeat until Z is the next closest node to X
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Practice

✤ Find the shortest path from g to f
using Djikstra’s Algorithm

43



Connectivity
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Network Reliability
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✤ What would happen if my router in NY 
went offline? If CA got knocked out?

✤ I often want there to always be a path 
available between all the nodes in my 
graph
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Connectedness
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✤ Two nodes are connected if there exists a path 
between them

✤ Otherwise they are disconnected

✤ If every pair of nodes in a graph is connected, then 
the whole graph is connected

✤ Otherwise it is disconnected

✤ If a graph is connected, then there exists a simple 
path between every pair of vertices in the graph
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Connected vs Disconnected
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Connected 
Components
✤ A part of a graph which is 

disconnected from all other parts is 
called a connected component

✤ Formally, a connected subgraph of G 
which is not a proper subgraph of 
any other connected subgraph of G is 
a connected component

✤ A connected graph has 1 connected 
component

✤ A disconnected graph has 2+
48
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Directed Graphs
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✤ The underlying undirected graph of 
a digraph is the same graph, minus 
directions

✤ A digraph is weakly connected if the 
underlying undirected graph is 
connected

✤ i.e. if the digraph is “in one piece”
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Strongly 
Connected

✤ A digraph G is strongly connected if for 
every pair of vertices a,b ∈ G, there exists a 
path from a to b and from b to a

✤ Note: this includes the pair a,a
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Practice
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Strongly Connected Components
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✤ Analogous to connected components

✤ Maximal subgraphs of G which are strongly connected
i.e. they are not contained within any other such strongly connected subgraphs

✤ We can compress a digraph into a directed acyclic graph by reducing it to a graph 
of its strongly connected components

✤ Treat all nodes in a SCC as interchangeable

✤ Model how to hop from one SCC to another



Strongly Connected Components
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Euler and Hamilton Paths/Cycles
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Euler Paths and Circuits
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✤ Euler Path: path in G which uses every edge 
exactly once

✤ can visit a node more than once

✤ Euler Circuit: Euler path which is also a 
circuit



Practice
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Practice
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Hamilton Paths and Circuits

✤ Hamilton Path: path visiting every node 
exactly once

✤ each edge can only be used once

✤ Hamilton Circuit: hamilton path which is 
also a circuit
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Practice
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Traveling Salesperson Problem

✤ Traveling Salesperson Problem (TSP)
or Traveling Salesman Problem

✤ Find the shortest hamilton cycle

✤ i.e. visiting every node once and 
returning to the start
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Traveling Salesperson Problem

✤ This is an NP-hard problem

✤ There are (n - 1)!/2 Hamilton cycles

✤ O(n!) to compute exhaustively

✤ FedEx pays lots and lots of money 
for improvements on this problem

✤ Often okay to find an 
approximate solution
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Route Total 
Distanc

e
D - T - GR - S - K - D 610
D - T - GR - K - S - D 516
D - T - K - S - GR - D 588
D - T - K - GR - S - D 458
D - T - S - K - GR - D 540
D - T - S - GR - K - D 504
D - S - T - GR - K - D 598
D - S - T - K - GR - D 576
D - S - K - GR - T - D 682
D - S - GR - T - K - D 646
D - GR - S - T - K - D 670
D - GR - T - S - K - D 728



Section 9.5

Spanning Trees
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Spanning Tree
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Finding Spanning Trees

✤ Trees are acyclic, graphs aren’t

✤ Remove edges to break up cycles

✤ Keep graph connected
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Practice
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Minimum Spanning Trees

✤ Weighted graphs

✤ Find spanning tree with the smallest 
possible sum of edge weights

✤ Applications:

✤ Making connected graphs
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Prim’s Algorithm

procedure Prim (G)
T := a minimum weight edge
for i := 1 to n - 2
     e := an edge of minimum weight,
            incident to a vertex in T,
            not forming a cycle in T
     T := T with e added
return T
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Kruskal’s Algorithm

procedure Kruskal (G)
T := an empty graph
for i := 1 to n - 1
   e := any edge of minimum weight in G,
        not forming a cycle if added to T
   T := T with e added
return T
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