#### Graph Theory

Chapter 9



### Graphs

- \* A graph consists of nodes and edges
  - The set of all nodes (or vertices) in a graph is V
  - \* The set of all edges in a graph is *E*
  - Each edge connects one or two vertices (called its' endpoints)
  - \* A graph is formally represented (*V*, *E*)
  - \* We will (usually) stick to **simple graphs**



### Simple Graphs

#### \* No loops

- Endpoints of an edge are distinct
- \* No multiple edges
  - between the same two vertices



#### Directed Graphs

- \* A directed edge, or arc connects two vertices, but has a start and end
  - Formally an arc (u, v) starts at u
     and ends at v
- A graph with directed edges is a directed graph or digraph



#### Seven Bridges of Königsberg

KONINGSBERGA





## Traveling Salesman Problem





## Terminology

- Two vertices *u* and *v* in an undirected graph *G* are **neighbors** if there exists an edge *e* in *G* which connects *u*, and *v*
  - Equivalently, u and v are said to be adjacent if there exists an edge which connects them
- The set of all neighbors of u (u's neighborhood) is N(u)
- This is defined similarly for sets of vertices



Degree

- \* If an edge *e* has vertex *u* as one of its' endpoints, *e* is **incident with** *u*
- \* The **degree** of a node u, deg(u), is the count of the number of edges incident with *u*
- \* A node with degree 0 is **isolated**



## In/Out -Degree

- \* In directed graphs, separate degrees
  - In-Degree: # of edges ending at u
     deg<sup>-</sup>(u)
  - Out-Degree: # of edges starting at u
     deg<sup>+</sup>(u)
- Vertices with in-degree 0 are sources
- Vertices with out-degree 0 are sinks

 $\sum \operatorname{deg}^{-}(v) = \sum \operatorname{deg}^{+}(v) = |E|$  $v \in V$  $v \in V$ 



#### Representations



## Graph ADT

- V = set of vertices
   E = set of edges
- Three operations
  - \* getDegree(u)
  - \* getAdjacent(u)
  - \* isAdjacentTo(u, v)



## Graph Representations

- Adjacency list
  - \* For each vertex, list the adjacent vertices
  - \* Good for **sparse** graphs with few edges
- Adjacency matrix
  - 2D matrix of 1s and 0s
    - \* 1 iff there is an edge from *i* to *j*
  - \* Good for **dense** graphs with many edges



## Graph Representations



#### Adjacency Matrix

| V | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 0 | 1 | 0 |
| 2 | 1 | 0 | 1 | 0 | 1 | 0 |
| 3 | 0 | 1 | 0 | 1 | 0 | 0 |
| 4 | 0 | 0 | 1 | 0 | 1 | 1 |
| 5 | 1 | 1 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 0 | 1 | 0 | 0 |

### Directed Graphs



#### Adjacency Matrix V $\left( \right)$ $\left( \right)$ ()()() $\left(\right)$ $\left( \right)$ $\left( \right)$ $\mathbf{0}$ ()()() $\left( \right)$ ()()()

#### Practice





#### Performance of List vs Matrix

|                     | Space                              | getDegree(u)             | isAdjacentTo(u,v)        | getAdjacent(u)           |
|---------------------|------------------------------------|--------------------------|--------------------------|--------------------------|
| Adjacency<br>List   | O(V+E)                             | <i>O</i> (D( <i>u</i> )) | <i>O</i> (D( <i>u</i> )) | <i>O</i> (D( <i>u</i> )) |
| Adjacency<br>Matrix | <i>O</i> ( <i>V</i> <sup>2</sup> ) | O(V)                     | <i>O</i> (1)             | <i>O(V)</i>              |

#### Paths

- A path (sometimes a walk) is a series of edges which starts at a vertex, travels from vertex to vertex along edges and ends at some vertex
  - Formally a path p is a set of edges s.t.
     p.start = e<sub>0</sub>.start
     p.end = e<sub>n</sub>.end
     e<sub>n</sub>.end = e<sub>n+1</sub>.start
- If *p*.start = *p*.end, then *p* is a circuit (cycle)

\* If no edge is repeated, the path is **simple** 



## Cyclic vs Acyclic

- \* Directed graphs can be **cyclic** or **acyclic** 
  - \* Cyclic: contains a cycle
  - Acyclic: does not contain any cycles



## Cycle Practice



# Cycle Practice



### How many cycles are there?







### Graph Search



## Depth-First Search (DFS)

- Visit some start vertex
- Follow an edge to a vertex which hasn't been explored
  - Visit that vertex
  - Follow an edge from that vertex to another unexplored vertex
  - If there are no edges to choose from,
     backtrack to the previous vertex



#### DFS



Order visited: a, b, c, g, h, d, k, j, f, e, i, m, l

#### A Recursive DFS Algorithm

**procedure** *DFS*(*G*: connected graph with vertices  $v_1$ ,  $v_2$ , ...,  $v_n$ ) *T* := tree consisting only of the vertex  $v_1$ f *visit*( $v_1$ )

procedure visit(v: vertex of G)
for each vertex w adjacent to v and not yet in T
 add vertex w and edge {v, w} to T
 visit(w)

#### Practice



#### Breadth-First Search

- Visit some start vertex
- Visit all neighbors of the start vertex
- Visit all those neighbors' neighbors
- \* Repeat until all vertices visited



#### BFS



Order visited: a, b, e, c, f, i, g, j, m, h, k, l, d

## A (non-recursive) BFS Algorithm

**procedure** *BFS* (*G*: connected graph with vertices  $v_1, v_2, ..., v_n$ ) T := tree consisting only of vertex  $v_1$  L := empty list put  $v_1$  in the list *L* of unprocessed vertices **while** *L* is not empty remove the first vertex, *v*, from *L*  **for** each neighbor *w* of *v*  **if** *w* is not in *L* and not in *T* **then** add *w* to the end of the list *L* add *w* and edge {*v*, *w*} to *T* 

#### Shortest-Path Problems

#### Shortest Path

- The length of a path is the number of edges in it
- Many problems try to find the shortest path between two vertices
  - \* Flights with the fewest stopovers
  - Driving directions with few instructions
- \* *Can* use DFS or BFS



#### Practice



## Weighted Graphs

- \* Add a **weight** to every edge
  - weights are normally "costs"

SF

\$3S

LA

 Length of a path is the sum of the weights of each edge



- \* Finds shortest path between X and Z in  $O(n^2)$  time
- **Greedy algorithm:** \*
  - Start with  $C = \{X\}$ \*
  - Search the neighbors of *C* to find next closest \* node to X not in C
    - Add it to C \*
    - \* Repeat until *Z* is the next closest node to *X*

















#### Practice

Find the shortest path from g to f
 using Djikstra's Algorithm



## Connectivity



### Network Reliability

- \* What would happen if my router in NY went offline? If CA got knocked out?
- I often want there to always be a path available between all the nodes in my graph

CA



#### Connectedness

- Two nodes are connected if there exists a path between them
  - \* Otherwise they are **disconnected**
- \* If every pair of nodes in a graph is connected, then the whole graph is **connected** 
  - Otherwise it is disconnected
- \* If a graph is connected, then there exists a simple path between every pair of vertices in the graph



#### Connected vs Disconnected



### Connected Components

- A part of a graph which is disconnected from all other parts is called a connected component
- Formally, a connected subgraph of G which is not a proper subgraph of any other connected subgraph of G is a connected component
- A connected graph has 1 connected component
- \* A disconnected graph has 2+



#### Directed Graphs

- The underlying undirected graph of a digraph is the same graph, minus directions
- A digraph is weakly connected if the underlying undirected graph is connected
  - \* i.e. if the digraph is "in one piece"





#### Strongly Connected

- \* A digraph *G* is **strongly connected** if for every pair of vertices  $a, b \in G$ , there exists a path from *a* to *b* and from *b* to *a* 
  - \* Note: this includes the pair *a*,*a*





#### Practice



# Strongly Connected Components

- Analogous to connected components \*
  - Maximal subgraphs of *G* which are strongly connected \* i.e. they are not contained within any other such strongly connected subgraphs
- \* We can **compress** a digraph into a directed acyclic graph by reducing it to a graph of its strongly connected components
  - Treat all nodes in a SCC as interchangeable
  - \* Model how to hop from one SCC to another

## Strongly Connected Components



#### Euler and Hamilton Paths/Cycles

#### **Euler Paths and Circuits**

- \* **Euler Path**: path in *G* which uses every edge exactly once
  - \* can visit a node more than once
- \* Euler Circuit: Euler path which is also a circuit





#### Practice





#### Practice



#### Hamilton Paths and Circuits

- Hamilton Path: path visiting every node exactly once
  - each edge can only be used once
- Hamilton Circuit: hamilton path which is also a circuit



#### Practice





### **Traveling Salesperson Problem**

- Traveling Salesperson Problem (TSP) or Traveling Salesman Problem
  - Find the shortest hamilton cycle
  - i.e. visiting every node once and returning to the start



## **Traveling Salesperson Problem**

- This is an NP-hard problem
  - \* There are (n 1)!/2 Hamilton cycles
  - \* O(n!) to compute exhaustively
  - FedEx pays lots and lots of money for improvements on this problem
    - Often okay to find an approximate solution

| Route                  | Total |
|------------------------|-------|
| D - T - GR - S - K - D | 610   |
| D - T - GR - K - S - D | 516   |
| D - T - K - S - GR - D | 588   |
| D - T - K - GR - S - D | 458   |
| D - T - S - K - GR - D | 540   |
| D - T - S - GR - K - D | 504   |
| D - S - T - GR - K - D | 598   |
| D - S - T - K - GR - D | 576   |
| D - S - K - GR - T - D | 682   |
| D - S - GR - T - K - D | 646   |
| D - GR - S - T - K - D | 670   |
| D - GR - T - S - K - D | 728   |

# Spanning Trees

Section 9.5



## Spanning Tree



## Finding Spanning Trees

- \* Trees are acyclic, graphs aren't
- \* Remove edges to break up cycles
  - Keep graph connected





#### Practice



### Minimum Spanning Trees

3

e

- Weighted graphs
- Find spanning tree with the smallest possible sum of edge weights
- Applications:
  - Making connected graphs



### Prim's Algorithm

3

e



### Kruskal's Algorithm

