Graph Theory

Chapter 9

Graphs

* A graph consists of nodes and edges
* The set of all nodes (or vertices) in a graph is V
* The set of all edges in a graph is E
* Each edge connects one or two vertices (called its' endpoints)

* A graph is formally represented (V, E)
*We will (usually) stick to simple graphs

Simple Graphs

* No loops
* Endpoints of an edge are distinct
* No multiple edges
* between the same two vertices

Directed Graphs

* A directed edge, or arc connects two vertices, but has a start and end
* Formally an arc (u, v) starts at u and ends at v

* A graph with directed edges is a directed graph or digraph

Seven Bridges of Königsberg

Traveling Salesman Problem

Terminology

* Two vertices u and v in an undirected graph G are neighbors if there exists an edge e in G which connects u, and v
* Equivalently, u and v are said to be adjacent if there exists an edge which connects them
* The set of all neighbors of u (u 's neighborhood) is $N(u)$
* This is defined similarly for sets of vertices

Degree

* If an edge e has vertex u as one of its' endpoints, e is incident with u
* The degree of a node $u, \operatorname{deg}(u)$, is the count of the number of edges incident with u
* A node with degree 0 is isolated

In/Out -Degree

* In directed graphs, separate degrees
* In-Degree: \# of edges ending at u $\operatorname{deg}^{-}(u)$
* Out-Degree: \# of edges starting at u $\operatorname{deg}^{+}(u)$
* Vertices with in-degree 0 are sources
* Vertices with out-degree 0 are sinks

$$
\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E|
$$

Representations

Graph ADT

* $V=$ set of vertices
$E=$ set of edges
* Three operations
* getDegree(u)
* getAdjacent(u)
* isAdjacentTo(u, v)

Graph Representations

* Adjacency list
* For each vertex, list the adjacent vertices
* Good for sparse graphs with few edges
* Adjacency matrix
* 2D matrix of 1s and 0s
* 1 iff there is an edge from i to j
* Good for dense graphs with many edges

Graph Representations

Graph

Adjacency List

V	Adj.
1	$1,2,5$
2	$1,3,5$
3	2,4
4	$3,5,6$
5	$1,2,4$
6	4

V	1	2	3	4	5	6
1	1	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0

Directed Graphs

Adjacency Matrix

V	1	2	3	4	5	6	7
1	0	0	0	0	0	1	1
2	0	0	0	0	1	1	0
3	1	1	0	1	0	0	0
4	0	0	0	0	1	0	1
5	1	0	0	0	0	0	0
6	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0

Practice

Practice

Performance of List vs Matrix

	Space	getDegree (u)	isAdjacentTo (u, v)	getAdjacent (u)
Adjacency List	$O(V+E)$	$O(\mathrm{D}(u))$	$O(\mathrm{D}(u))$	$O(\mathrm{D}(u))$
Adjacency Matrix	$O\left(V^{2}\right)$	$O(V)$	$O(1)$	$O(V)$

Paths

* A path (sometimes a walk) is a series of edges which starts at a vertex, travels from vertex to vertex along edges and ends at some vertex
* Formally a path p is a set of edges s.t.
p. start $=e_{0}$. start
p. end $=e_{n}$. end
e_{n}. end $=e_{n+1}$.start
* If p. start $=p$.end, then p is a circuit (cycle)

* If no edge is repeated, the path is simple

Cyclic vs Acyclic

* Directed graphs can be cyclic or acyclic
* Cyclic: contains a cycle
* Acyclic: does not contain any cycles

Cycle Practice

Cycle Practice

How many cycles are there?

Graph Search

Depth-First Search (DFS)

* Visit some start vertex
* Follow an edge to a vertex which hasn't been explored
*Visit that vertex
*Follow an edge from that vertex to another unexplored vertex
* If there are no edges to choose from, backtrack to the previous vertex

DFS

Order visited: $a, b, c, g, h, d, k, j, f, e, i, m, l$

A Recursive DFS Algorithm

procedure $\operatorname{DFS}\left(G\right.$: connected graph with vertices $\left.v_{1}, v_{2}, \ldots, v_{n}\right)$
$T:=$ tree consisting only of the vertex $v_{1} f$ $\operatorname{visit}\left(v_{1}\right)$
procedure visit(v: vertex of G)
for each vertex w adjacent to v and not yet in T
add vertex w and edge $\{v, w\}$ to T
visit(w)

Practice

Breadth-First Search

* Visit some start vertex
* Visit all neighbors of the start vertex
* Visit all those neighbors' neighbors
* Repeat until all vertices visited

Order visited: $\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{c}, \mathrm{f}, \mathrm{i}, \mathrm{g}, \mathrm{j}, \mathrm{m}, \mathrm{h}, \mathrm{k}, \mathrm{l}, \mathrm{d}$

A (non-recursive) BFS Algorithm

procedure $B F S$ (G : connected graph with vertices $v_{1}, v_{2}, \ldots, v_{n}$)
$T:=$ tree consisting only of vertex v_{1}
$L:=$ empty list
put v_{1} in the list L of unprocessed vertices
while L is not empty
remove the first vertex, v, from L
for each neighbor w of v
if w is not in L and not in T then add w to the end of the list L add w and edge $\{v, w\}$ to T

Shortest-Path Problems

Shortest Path

*The length of a path is the number of edges in it

* Many problems try to find the shortest path between two vertices
* Flights with the fewest stopovers
* Driving directions with few instructions
* Can use DFS or BFS

Practice

Weighted Graphs

* Add a weight to every edge
* weights are normally "costs"
* Length of a path is the sum of the weights of each edge

Dijkstra's Algorithm

* Finds shortest path between X and Z in $O\left(n^{2}\right)$ time
* Greedy algorithm:
* Start with $C=\{X\}$
* Search the neighbors of C to find next closest node to X not in C

* Add it to C
* Repeat until Z is the next closest node to X

Dijkstra's Algorithm

Dijkstra's Algorithm

\{X,c\}, 2

Dijkstra's Algorithm

$\{\mathrm{X}, \mathrm{c}\}, 2$
\{X,c,e\}, 12

Dijkstra's Algorithm

$\{\mathrm{X}, \mathrm{c}\}, 2$
\{X,c,e\}, 12

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Practice

* Find the shortest path from g to f using Djikstra's Algorithm

Connectivity

Network Reliability

* What would happen if my router in NY went offline? If CA got knocked out?
* I often want there to always be a path available between all the nodes in my graph

Connectedness

* Two nodes are connected if there exists a path between them
* Otherwise they are disconnected
* If every pair of nodes in a graph is connected, then the whole graph is connected
* Otherwise it is disconnected
* If a graph is connected, then there exists a simple path between every pair of vertices in the graph

Connected vs Disconnected

Connected Components

* A part of a graph which is disconnected from all other parts is called a connected component
* Formally, a connected subgraph of G which is not a proper subgraph of any other connected subgraph of G is a connected component
* A connected graph has 1 connected component
* A disconnected graph has 2+

Directed Graphs

* The underlying undirected graph of a digraph is the same graph, minus directions
* A digraph is weakly connected if the underlying undirected graph is connected
* i.e. if the digraph is "in one piece"

Strongly Connected

* A digraph G is strongly connected if for every pair of vertices $a, b \in G$, there exists a path from a to b and from b to a
* Note: this includes the pair a, a

Practice

Strongly Connected Components

* Analogous to connected components
* Maximal subgraphs of G which are strongly connected i.e. they are not contained within any other such strongly connected subgraphs
* We can compress a digraph into a directed acyclic graph by reducing it to a graph of its strongly connected components
* Treat all nodes in a SCC as interchangeable
* Model how to hop from one SCC to another

Strongly Connected Components

Euler and Hamilton Paths/Cycles

Euler Paths and Circuits

* Euler Path: path in G which uses every edge exactly once
* can visit a node more than once
* Euler Circuit: Euler path which is also a circuit

Practice

Practice

Hamilton Paths and Circuits

* Hamilton Path: path visiting every node exactly once
* each edge can only be used once

* Hamilton Circuit: hamilton path which is also a circuit

Practice

Traveling Salesperson Problem

* Traveling Salesperson Problem (TSP) or Traveling Salesman Problem
* Find the shortest hamilton cycle
* i.e. visiting every node once and returning to the start

Traveling Salesperson Problem

*This is an NP-hard problem

* There are ($n-1$)!/2 Hamilton cycles
* $O(n!)$ to compute exhaustively
* FedEx pays lots and lots of money for improvements on this problem
* Often okay to find an approximate solution

Route	Total
D - T - GR - S - K - D	610
D - T - GR - K - S - D	516
D - T - K - - GR - D	588
D - T - K - GR - S - D	458
D - T - S K - GR - D	540
D - T - - GR - K - D	504
D - S - T - GR - K - D	598
D - S - - K - GR - D	576
D - S - K - GR - T - D	682
D - S - GR - T - - D	646
D - GR - S - - K - D	670
D - GR - T - S - - D	728

Spanning Trees

Section 9.5

Spanning Tree

Finding Spanning Trees

* Trees are acyclic, graphs aren't
* Remove edges to break up cycles
* Keep graph connected

Practice

Minimum Spanning Trees

* Weighted graphs

Prim's Algorithm

```
procedure Prim (G)
```

$T:=$ a minimum weight edge
for $i:=1$ to $n-2$
$e:=$ an edge of minimum weight, incident to a vertex in T, not forming a cycle in T
$T:=T$ with e added
return T

Kruskal's Algorithm

procedure Kruskal (G)
$T:=$ an empty graph
for $i:=1$ to $n-1$
$e:=$ any edge of minimum weight in G, not forming a cycle if added to T
$T:=T$ with e added
return T

