Binomial Queues

Section 6.8

Heap Operations: Merge

- Given two binary heaps H_1 and H_2 , produce a new heap H' combining H_1 and H_2 * Binary heaps take $\Theta(n_1 + n_2)$ time to merge *
 - * i.e. they can never merge in better than linear time
- We can do better, however *
 - * Merge in $O(\log N)$ time
 - * this comes at the expensive of a slight performance hit on our other operations

Binomial Trees

- Binomial trees are recursive defined
 - Start with one node
 - * This is a binomial tree of **height** 0
 - To form a tree of height k, attach two trees of height k 1 together
 - Attach one as a child of the root of the other

Binomial Tree Size

- A binomial tree of height k has 2^k
 nodes
 - Conversely, a binomial tree with n nodes has log₂(n) height
- The number of nodes at level *d* of a tree with height *k* is the binomial coefficient:

$$\binom{k}{d} = \frac{k!}{d!(k-d)!}$$

*B*₃

Binomial Queues

- * Binomial Heaps/Binomial Queues
 - * use a **forest** of binomial trees
 - use each binomial tree {0,1} times
 - impose heap ordering on each binomial tree
 - * no relationship between the roots of each tree

Binomial Queues

7

Binomial Queue Size

- * A binomial queue *H* with *N* nodes has *O*(log *N*) binomial trees
 - * let *k* be the largest integer such that $2^k \le N$
 - * observe that $k \leq \log_2(N)$
 - * N can be written as the sum of unique powers of 2, the largest of which is 2^k
 - * this sum uses each power of 2 {0,1} times
 - * the sum has at most k + 1 terms in it
 - * each term corresponds to a binomial tree of 2^n nodes in the forest of H

Merge

* "Add" corresponding trees from the two forests

*H*₁:

- For *k* from 0 to maxheight *
 - If neither queue has a *B*_k, skip *
 - If only 1, leave it *
 - If two, attach the larger priority root * as a child of the other, producing a tree of height k + 1
 - If three, pick two to merge, leave 1 *

9

After Merging H_1 and H_2

Insertion

- * To insert a node X into a binomial queue H:
 - * Observe that a single node is a binomial tree of height 0
 - * So treat X as a binomial queue
 - * Merge X and H
- Merge operation takes log(N) time
 - Therefore so does insert *

insert(1)

insert(2)

insert(3)

insert(4)

insert(5)

insert(6)

insert(7)

- To deleteMin from a binomial queue H *
- Find the binomial tree with the smallest root, let this be B_k *
- Remove B_k from H_j leaving the rest of the trees to form queue H'*
 - Delete (and return to user) the root of B_k *
 - * this leaves us with the children of B_k 's root, which are binomial trees of size B_0 , B_1 , ..., B_{k-1}
 - * then let the trees B_0 , B_1 , ..., B_{k-1} form a new binomial queue H''
- Merge H' and H'' to repair the tree *

Also $O(\log N)!$

Non-Standard Operations

* percolateUp

identical to binary heap

* decreaseKey

- * percolateUp as far as root of binomial tree
- * delete (an arbitrary node)
 - * decreaseKey to $-\infty$, then deleteMin