Binomial Queues

Section 6.8



Heap Operations: Merge

* Given two binary heaps Hi and H,, produce a new heap H combining H; and H>
* Binary heaps take O(n1 + n2) time to merge
* i.e. they can never merge in better than linear time

* We can do better, however
* Merge in O(log N) time

* this comes at the expensive of a slight performance hit on our other operations



Bimomal Irees

* Binomial trees are recursive defined
+ Start with one node
* This is a binomial tree of height 0

* To form a tree of height k, attach two
trees of height k - 1 together

+ Attach one as a child of the root
of the other







Binomal Tree Size

* A binomial tree of height k has 2*
nodes

* Conversely, a binomial tree with n

nodes has log»(11) height

+ The number of nodes at level d of a
tree with height k is the binomial
coefficient:

L ok
d| d\(k-d)




Binomial Queues

* Binomial Heaps/Binomial Queues
* use a forest of binomial trees
+ use each binomial tree {0,1} times
* impose heap ordering on each binomial tree

* no relationship between the roots of each tree



Binomial Queues

@a o



Binomial Queue Size

* A binomial queue H with N nodes has O(log N) binomial trees
* let k be the largest integer such that 2f< N
* observe that k < log>(N)
* N can be written as the sum of unique powers of 2, the largest of which is 2*
* this sum uses each power of 2 {0,1} times
* the sum has at most k + 1 terms in it

* each term corresponds to a binomial tree of 2" nodes in the forest of H



Merge

* “Add” corresponding trees from the two

forests
H1: @
* For k from 0 to maxheight @ e @

* If neither queue has a By, skip

* If only 1, leave it
g b
* If two, attach the larger priority root
as a child of the other,
producing a tree of height k + 1

* If three, pick two to merge, leave 1 O (108 N)!



After Merging /11 and /15

&) & (2,
Q0 0 OF O
O &



Insertion

* To insert anode X into a binomial queue H:
* Observe that a single node is a binomial tree of height 0
* 5o treat X as a binomial queue
* Merge X and H

* Merge operation takes log(N) time

¢+ Therefore so does insert

11



1nsert (1)




1nsert (2)




(
l n

e o



1nsert (4)




1nsert (5)




1nsert (o)




1nsert (/)

@ M o O



deleteMin

* To deleteMin from a binomial queue H

+ Find the binomial tree with the smallest root, let this be Bx

+ Remove B from H, leaving the rest of the trees to form queue H’
+ Delete (and return to user) the root of Bx

+ this leaves us with the children of Bi's root,
which are binomial trees of size By, Bi, ..., Bk

* then let the trees By, By, ..., Bi-1 form a new binomial queue H”

* Merge H and H” to repair the tree

Also O(log N)!

19



deleteMin

OO




deleteMin

O
ONOENO
O 21



deleteMin

s (e O
Q@ O

O
OROENO
OO
O



deleteMin




Non-Standard Operations

+ percolateUp

* identical to binary heap

+ decreaseKey
* percolateUp as far as root of binomial tree
* delete (an arbitrary node)

* decreaseKey to -, then deleteMin

24



