
Section 6.8

Binomial Queues

1

Heap Operations: Merge

2

✤ Given two binary heaps H1 and H2, produce a new heap H’ combining H1 and H2

✤ Binary heaps take Θ(n1 + n2) time to merge

✤ i.e. they can never merge in better than linear time

✤ We can do better, however

✤ Merge in O(log N) time

✤ this comes at the expensive of a slight performance hit on our other operations

Binomial Trees

3

✤ Binomial trees are recursive defined

✤ Start with one node

✤ This is a binomial tree of height 0

✤ To form a tree of height k, attach two
trees of height k - 1 together

✤ Attach one as a child of the root
of the other

B0 B1 B2

B3

B0 B1 B2

B3

B4

4

B4

Binomial Tree Size

5

✤ A binomial tree of height k has 2k
nodes

✤ Conversely, a binomial tree with n
nodes has log2(n) height

✤ The number of nodes at level d of a
tree with height k is the binomial
coefficient:

k
d

!

"
#

$

%
&=

k!
d!(k − d)!

B3

Binomial Queues

6

✤ Binomial Heaps/Binomial Queues

✤ use a forest of binomial trees

✤ use each binomial tree {0,1} times

✤ impose heap ordering on each binomial tree

✤ no relationship between the roots of each tree

Binomial Queues

7

16

18

12

21 24

65

H1:

Binomial Queue Size

✤ A binomial queue H with N nodes has O(log N) binomial trees

✤ let k be the largest integer such that 2k ≤ N

✤ observe that k ≤ log2(N)

✤ N can be written as the sum of unique powers of 2, the largest of which is 2k

✤ this sum uses each power of 2 {0,1} times

✤ the sum has at most k + 1 terms in it

✤ each term corresponds to a binomial tree of 2n nodes in the forest of H
8

Merge

✤ “Add” corresponding trees from the two
forests

✤ For k from 0 to maxheight

✤ If neither queue has a Bk, skip

✤ If only 1, leave it

✤ If two, attach the larger priority root
as a child of the other,
producing a tree of height k + 1

✤ If three, pick two to merge, leave 1
9

16

18

12

21 24

65

H1:

14

26

23

51 24

65

H2:
13

O(log N)!

After Merging H1 and H2

10

12

21 24

65

14

26 16

18

23

51 24

65

13

Insertion

11

✤ To insert a node X into a binomial queue H:

✤ Observe that a single node is a binomial tree of height 0

✤ So treat X as a binomial queue

✤ Merge X and H

✤ Merge operation takes log(N) time

✤ Therefore so does insert

insert(1)

12

1

insert(2)

13

1

2

insert(3)

14

1

2

3

insert(4)

15

1

2 3

4

insert(5)

16

5 1

2 3

4

insert(6)

17

5

6

1

2 3

4

insert(7)

18

5

6

1

2 3

4

7

deleteMin

19

✤ To deleteMin from a binomial queue H

✤ Find the binomial tree with the smallest root, let this be Bk

✤ Remove Bk from H, leaving the rest of the trees to form queue H’

✤ Delete (and return to user) the root of Bk

✤ this leaves us with the children of Bk’s root,
which are binomial trees of size B0, B1, ..., Bk-1

✤ then let the trees B0, B1, ..., Bk-1 form a new binomial queue H’’

✤ Merge H’ and H’’ to repair the tree

Also O(log N)!

deleteMin

20

12

21 24

65

14

26 16

18

23

51 24

65

13

deleteMin

21

12

21 24

65

14

26 16

18

21 24

65

14

26 16

18

H'' :

deleteMin

22

23

51 24

65

H' :

14

65

14

26 16

18

H'' :
21

13

deleteMin

23

13

21 24

65

14

26 16

18

23

51 24

65

Non-Standard Operations

24

✤ percolateUp

✤ identical to binary heap

✤ decreaseKey

✤ percolateUp as far as root of binomial tree

✤ delete (an arbitrary node)

✤ decreaseKey to -∞, then deleteMin

