
Section 6.8

Binomial Queues
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Heap Operations: Merge
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✤ Given two binary heaps H1 and H2, produce a new heap H’ combining H1 and H2

✤ Binary heaps take Θ(n1 + n2) time to merge

✤ i.e. they can never merge in better than linear time

✤ We can do better, however

✤ Merge in O(log N) time

✤ this comes at the expensive of a slight performance hit on our other operations



Binomial Trees
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✤ Binomial trees are recursive defined

✤ Start with one node

✤ This is a binomial tree of height 0

✤ To form a tree of height k, attach two 
trees of height k - 1 together

✤ Attach one as a child of the root 
of the other
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Binomial Tree Size
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✤ A binomial tree of height k has 2k 
nodes

✤ Conversely, a binomial tree with n 
nodes has log2(n) height

✤ The number of nodes at level d of a 
tree with height k is the binomial 
coefficient:
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Binomial Queues
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✤ Binomial Heaps/Binomial Queues

✤ use a forest of binomial trees

✤ use each binomial tree {0,1} times

✤ impose heap ordering on each binomial tree

✤ no relationship between the roots of each tree



Binomial Queues
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Binomial Queue Size

✤ A binomial queue H with N nodes has O(log N) binomial trees

✤ let k be the largest integer such that 2k ≤ N

✤ observe that k ≤ log2(N)

✤ N can be written as the sum of unique powers of 2, the largest of which is 2k

✤ this sum uses each power of 2 {0,1} times

✤ the sum has at most k + 1 terms in it

✤ each term corresponds to a binomial tree of 2n nodes in the forest of H
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Merge

✤ “Add” corresponding trees from the two 
forests

✤ For k from 0 to maxheight

✤ If neither queue has a Bk, skip

✤ If only 1, leave it

✤ If two, attach the larger priority root 
as a child of the other,
producing a tree of height k + 1

✤ If three, pick two to merge, leave 1
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After Merging H1 and H2
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Insertion
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✤ To insert a node X into a binomial queue H:

✤ Observe that a single node is a binomial tree of height 0

✤ So treat X as a binomial queue

✤ Merge X and H

✤ Merge operation takes log(N) time

✤ Therefore so does insert



insert(1)
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insert(7)
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deleteMin
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✤ To deleteMin from a binomial queue H

✤ Find the binomial tree with the smallest root, let this be Bk

✤ Remove Bk from H, leaving the rest of the trees to form queue H’

✤ Delete (and return to user) the root of Bk

✤ this leaves us with the children of Bk’s root,
which are binomial trees of size B0, B1, ..., Bk-1

✤ then let the trees B0, B1, ..., Bk-1 form a new binomial queue H’’

✤ Merge H’ and H’’ to repair the tree

Also O(log N)!



deleteMin
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deleteMin
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deleteMin
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Non-Standard Operations

24

✤ percolateUp

✤ identical to binary heap

✤ decreaseKey

✤ percolateUp as far as root of binomial tree

✤ delete (an arbitrary node)

✤ decreaseKey to -∞, then deleteMin


