Binomial Queues

Section 6.8

Heap Operations: Merge

* Given two binary heaps H_{1} and H_{2}, produce a new heap H^{\prime} combining H_{1} and H_{2}
* Binary heaps take $\Theta\left(n_{1}+n_{2}\right)$ time to merge
* i.e. they can never merge in better than linear time
* We can do better, however
* Merge in $O(\log N)$ time
* this comes at the expensive of a slight performance hit on our other operations

Binomial Trees

*Binomial trees are recursive defined

* Start with one node
* This is a binomial tree of height 0
* To form a tree of height k, attach two trees of height $k-1$ together
* Attach one as a child of the root of the other

$\frac{8_{0}^{B_{4}}}{\frac{s_{4}}{000000000000} 0}$

Binomial Tree Size

* A binomial tree of height k has 2^{k} nodes
B_{3}

$$
\binom{k}{d}=\frac{k!}{d!(k-d)!}
$$

Binomial Queues

*Binomial Heaps/Binomial Queues

* use a forest of binomial trees
* use each binomial tree $\{0,1\}$ times
* impose heap ordering on each binomial tree
* no relationship between the roots of each tree

Binomial Queues

Binomial Queue Size

* A binomial queue H with N nodes has $O(\log N)$ binomial trees
* let k be the largest integer such that $2^{k} \leq N$
* observe that $k \leq \log _{2}(N)$
* N can be written as the sum of unique powers of 2 , the largest of which is 2^{k}
* this sum uses each power of $2\{0,1\}$ times
* the sum has at most $k+1$ terms in it
* each term corresponds to a binomial tree of 2^{n} nodes in the forest of H

Merge

* "Add" corresponding trees from the two forests
* For k from 0 to maxheight
* If neither queue has a B_{k}, skip
H_{1}
* If only 1, leave it
* If two, attach the larger priority root as a child of the other, producing a tree of height $k+1$

* If three, pick two to merge, leave 1

After Merging H_{1} and H_{2}
(13)

Insertion

* To insert a node X into a binomial queue H :
* Observe that a single node is a binomial tree of height 0
* So treat X as a binomial queue
* Merge X and H
* Merge operation takes $\log (N)$ time
* Therefore so does insert
insert(1)
(1)
insert(2)

insert(3)
insert(4)

insert(5)

insert(6)
(5)

insert (7)

$$
0_{0} 0_{0}
$$

deleteMin

* To deleteMin from a binomial queue H
* Find the binomial tree with the smallest root, let this be B_{k}
* Remove B_{k} from H, leaving the rest of the trees to form queue H^{\prime}
* Delete (and return to user) the root of B_{k}
* this leaves us with the children of $B_{k}{ }^{\prime}$ s root, which are binomial trees of size $B_{0}, B_{1}, \ldots, B_{k-1}$
* then let the trees $B_{0}, B_{1}, \ldots, B_{k-1}$ form a new binomial queue $H^{\prime \prime}$
* Merge H^{\prime} and $H^{\prime \prime}$ to repair the tree
deleteMin

13

deleteMin

deleteMir
O-Coce

Non-Standard Operations

* percolateUp
* identical to binary heap
* decreaseKey
* percolateUp as far as root of binomial tree
* delete (an arbitrary node)
* decreaseKey to $-\infty$, then deleteMin

