
CMSC 341

Amortized Analysis

What is amortized analysis?

  Consider a sequence of operations on a
 dynamic data structure
  Insert or delete in any (valid) order

  Worst case analysis asks: What is the most
 expensive any single operation can be?

  Amortized analysis asks: What is an upper
 bound on the average per-operation cost
 over the entire sequence?

10/6/2008 UMBC CMSC 341 Amortized Analysis 2

Nature of the amortized bound

  Amortized bounds are hard bounds
  They do not mean “on average (or most of

 the time) the bound holds”
  They do mean “for any sequence of n

 operations, the bound holds over that
 sequence”

10/6/2008 UMBC CMSC 341 Amortized Analysis 3

Three methods

  Aggregate method
  T(n) = upper bound on total cost of n operations
  Amortized cost is T(n)/n
  Some operations may cost more, a lot more, than

 T(n)/n
  If so, some operations must cost less
  But the average cost over the sequence will never

 exceed T(n)/n

10/6/2008 UMBC CMSC 341 Amortized Analysis 4

Three methods

  Accounting method
  Each operation pays a “fee” (cost of operation)
  Overcharge some operations and store extra as

 pre-payment for later operations
  Amortized cost is (total of fees paid)/n
  Must ensure bank account never negative,

 otherwise fee was not high enough and bound
 does not hold

  Overpayment stored with specific objects in data
 structure (e.g., nodes in a BST)

10/6/2008 UMBC CMSC 341 Amortized Analysis 5

Three methods (cont.)

  Potential method
  Like accounting method
  Overpayment stored as “potential energy” of

 entire data structure (not specific objects)
  Must ensure that potential energy never falls

 below zero

10/6/2008 UMBC CMSC 341 Amortized Analysis 6

Increment a binary counter

10/6/2008 UMBC CMSC 341 Amortized Analysis 7

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 0

  K-bit value stored in array
  To increment value, flip bits right-to-left until

 you turn a 0 into a 1
  Each bit flip costs O(1)
  What is the amortized cost of counting from 0

 to n?

Increment a binary counter

10/6/2008 UMBC CMSC 341 Amortized Analysis 8

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 0

  Worst case
  Flip k bits per increment
  Do that n times to count to n
  O(kn)

  But, most of the time we don’t flip many bits

Increment a binary counter

10/6/2008 UMBC CMSC 341 Amortized Analysis 9

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0

Cost

1

2

2

3

1

1

1
4

Total: 15

Aggregate method

  A(0) flips every time, or n times
  A(1) flips every 2nd time, or n/2 times
  A(2) flips every 4th time, or n/4 times
  A(i) flips n/2i times

  Total cost is Σi=0,k-1n/2i ≤ Σi=0,∞n/2i = 2n = O(n)
  So amortized cost is O(n)/n = O(1)

10/6/2008 UMBC CMSC 341 Amortized Analysis 10

Accounting method

  Flipping a bit costs $1 (one unit of
 computational work)

  Pay $2 to change a 0 to a 1
  Use $1 to pay for flipping the bit to 1
  Leave $1 there to pay when/if the bit gets flipped

 back to 0
  Since only one bit gets flipped to 1 per

 increment, total cost is $2n = O(n)

10/6/2008 UMBC CMSC 341 Amortized Analysis 11

Accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis 12

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 0
$0 $0 $0 $0 $0 $0 $0 $0 $0 $0

  Flip A(0) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2)

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 1
$0 $0 $0 $0 $0 $0 $0 $0 $0 $1

Accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis 13

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 1
$0 $0 $0 $0 $0 $0 $0 $0 $0 $1

  Flip A(0) to 0 and pay with the $1 that was
 there already

  Flip A(1) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2)

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 1 0
$0 $0 $0 $0 $0 $0 $0 $0 $1 $0

Accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis 14

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 1 0
$0 $0 $0 $0 $0 $0 $0 $0 $1 $0

  Flip A(0) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2)

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 1 1
$0 $0 $0 $0 $0 $0 $0 $0 $1 $1

Accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis 15

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 1 1
$0 $0 $0 $0 $0 $0 $0 $0 $1 $1

  Flip A(0) and A(1) to 0 and pay with the $$
 that were there already

  Flip A(2) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2)

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 1 0 0
$0 $0 $0 $0 $0 $0 $0 $1 $0 $0

Accounting method

  … and so on
  We “overpay” by $1 for flipping each 0 to 1
  Use the extra $1 to pay for the cost of flipping

 it back to a zero
  Because a $2 fee for each increment ensures

 that we have enough money stored to
 complete that increment, amortized cost is
 $2 = O(1) per operation

10/6/2008 UMBC CMSC 341 Amortized Analysis 16

Potential method

  Record overpayments as “potential
 energy” (or just “potential”) of entire data
 structure

  Contrast with accounting method where
 overpayments stored with specific parts of
 data structure (e.g., array cells)

10/6/2008 UMBC CMSC 341 Amortized Analysis 17

Potential method

  Initial data structure is D0

  Perform operations i = 1, 2, 3, …, n
  The actual cost of operation i is ci

  The ith operation yields data structure Di

  Φ(Di) = potential of Di, or stored overpayment
  Amortized cost of the ith operation is

  xi = ci + Φ(Di) - Φ(Di-1)

10/6/2008 UMBC CMSC 341 Amortized Analysis 18

Potential method

  If Φ(Di) - Φ(Di-1) > 0 then xi is an overcharge
 to ith operation
  We paid more than the actual cost of the

 operation

  If Φ(Di) - Φ(Di-1) < 0 then xi is an undercharge
 to the ith operation
  We paid less than the actual cost of the operation,

 but covered the difference by spending potential

10/6/2008 UMBC CMSC 341 Amortized Analysis 19

Potential method

  Total amortized cost:
  Σxi = Σ(ci + Φ(Di) - Φ(Di-1)) = Σci + Φ(Dn) - Φ(D0)
  Sum of actual costs plus whatever potential we

 added but didn’t use

  Require that Φ(Di) ≥ 0 so we always “pay in
 advance”

10/6/2008 UMBC CMSC 341 Amortized Analysis 20

Potential method: Binary counter

  Need to choose potential function Φ(Di)
  Want to make xi = ci + Φ(Di) - Φ(Di-1) small
  Usually have to be lucky or clever!
  Let Φ(Di) = bi, the number of ones in the

 counter after the ith operation
  Note that Φ(Di) ≥ 0 so we’re OK
  Recall $1 stored with each 1 in the array when

 using the accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis 21

Potential method: Binary counter

  Operation i resets (zeroes) ti bits
  True cost of operation i is ti + 1

  The +1 is for setting a single bit to 1
  Number of ones in counter after ith operation

 is therefore bi = bi-1 – ti + 1

10/6/2008 UMBC CMSC 341 Amortized Analysis 22

Potential method: Binary counter

  Number of ones in counter after ith operation
 is bi = bi-1 – ti + 1

  Potential difference is
  Φ(Di) - Φ(Di-1) = bi – bi-1 = (bi-1–ti+1) – bi-1 = 1 – ti

  Amortized cost is
  xi = ci + Φ(Di) - Φ(Di-1) = (ti + 1) + (1 – ti) = 2
  If we pay just $2 per operation, we always have

 enough potential to cover our actual costs per
 operation

10/6/2008 UMBC CMSC 341 Amortized Analysis 23

Amortized analysis of splay trees

  Use the accounting method
  Store $$ with nodes in tree

  First, some definitions
  Let nx be the number of nodes in the subtree

 rooted by node x
  Let rx = floor(log(nx))

  Called the rank of x

10/6/2008 UMBC CMSC 341 Amortized Analysis 24

What we’ll show

  If every node x always has rx credits then
 splay operations require amortized O(lgn)
 time

  This is called the “credit invariant”
  For each operation (find, insert, delete) we’ll

 have to show that we can maintain the credit
 invariant and pay for the true cost of the
 operation with O(lgn) $$ per operation

10/6/2008 UMBC CMSC 341 Amortized Analysis 25

First things first

  Consider a single splay step
  Single rotation (no grandparent), zig-zig, or zig

-zag
  Nodes x, y = parent(x), z = parent(y)
  rx, ry, and rz are ranks before splay step
  r’x, r’y,and r’z are ranks after splay step

10/6/2008 UMBC CMSC 341 Amortized Analysis 26

For example (zig-zig case)

10/6/2008 UMBC CMSC 341 Amortized Analysis 27

x

A

y

B

C

y

B z

C D

rx

ry

r’x

r’y

z

D

rz

x

A
r’z

What does a single splay step cost?

  To pay for rotations (true cost of step) and
 maintain credit invariant
  3(r’x – rx) + 1 credits suffice for single rotation
  3(r’x – rx) credits suffice for zig-zig and zig-zag

10/6/2008 UMBC CMSC 341 Amortized Analysis 28

What does a sequence of splay steps
 cost?
  As node x moves up the tree, sum costs of

 individual steps
  r’x for one step becomes rx for next step
  Summing over all steps to the root telescopes

 to become 3(rv – rx) + 1 where v is the root
 node
  3(r’x – rx) + 3(r’’x – r’x) + 3(r’’’x – r’’x) … + 1
  Note +1 only required (sometimes) for last step

10/6/2008 UMBC CMSC 341 Amortized Analysis 29

The punch line!

  3(rv – rx) + 1 = O(logn)
  v is root node of tree with n nodes
  rv = floor(logn)

  We can splay any node to the root in O(logn)
 time

10/6/2008 UMBC CMSC 341 Amortized Analysis 30

Single rotation

10/6/2008 UMBC CMSC 341 Amortized Analysis 31

x

A

y

B

C

x

A y

B C

rx

ry r’x

r’y

To maintain credit invariant at all nodes need to add $Δ
•  Only rx and ry can change
•  Δ = (r’x – rx) + (r’y – ry)
•  Note that r’x = ry so …
•  Δ = r’y – rx
•  Note that r’x ≥ r’y so …
•  Δ = r’y – rx ≤ r’x - rx

Single rotation

10/6/2008 UMBC CMSC 341 Amortized Analysis 32

x

A

y

B

C

x

A y

B C

rx

ry r’x

r’y

To maintain credit invariant at all nodes it suffices to pay $(r’x – rx)
•  Still need to pay O(1) for the rotation
•  We allocated 3(r’x – rx) + 1 credits
•  If r’x > rx we’ve still got 2(r’x – rx) > 1 credits to pay for the rotation
•  The +1 is there in case r’x = rx

•  When can that happen?

Zig-zig

10/6/2008 UMBC CMSC 341 Amortized Analysis 33

x

A

y

B

C

y

B z

C D

rx

ry

r’x

r’y

To maintain credit invariant at all nodes need to add $Δ
• Δ = (r’x – rx) + (r’y – ry) + (r’z – rz)
• Note that r’x = rz so …
• Δ = r’y + r’z – rx – ry
• Note that r’x ≥ r’y and r’x ≥ r’z and rx ≤ ry so …
• Δ = r’y + r’z – rx – ry ≤ r’x + r’x – rx – rx = 2(r’x – rx)

z

D

rz

x

A
r’z

Zig-zig

10/6/2008 UMBC CMSC 341 Amortized Analysis 34

x

A

y

B

C

y

B z

C D

rx

ry

r’x

r’y

To maintain credit invariant at all nodes it suffices to pay $2(r’x – rx)
•  Still need to pay O(1) for the rotations
•  If r’x > rx we can use r’x – rx ≥ 1 credits to pay for the two

rotations for a total of $3(r’x – rx)
•  Otherwise, r’x = rx so r’x = rx = ry = rz

•  Why?
•  In this case, we can show that maintaining the invariant frees

one or more credits that can be used to pay for the rotations

z

D

rz

x

A
r’z

Zig-zag

10/6/2008 UMBC CMSC 341 Amortized Analysis 35

x

A y

C B

y

C

z

A

•  Analysis analogous to zig-zig step
•  At most $3(r’x – rx) required to maintain invariant and

pay for rotations

z

D

x

D B

