CMSC 341

Amortized Analysis

What is amortized analysis?

- Consider a sequence of operations on a dynamic data structure
- Insert or delete in any (valid) order
- Worst case analysis asks: What is the most expensive any single operation can be?
- Amortized analysis asks: What is an upper bound on the average per-operation cost over the entire sequence?

Nature of the amortized bound

- Amortized bounds are hard bounds
- They do not mean "on average (or most of the time) the bound holds"
- They do mean "for any sequence of n operations, the bound holds over that sequence"

Three methods

- Aggregate method
- $T(n)=$ upper bound on total cost of n operations
- Amortized cost is $T(n) / n$
- Some operations may cost more, a lot more, than T(n)/n
- If so, some operations must cost less
- But the average cost over the sequence will never exceed $T(n) / n$

Three methods

- Accounting method
- Each operation pays a "fee" (cost of operation)
- Overcharge some operations and store extra as pre-payment for later operations
- Amortized cost is (total of fees paid)/n
- Must ensure bank account never negative, otherwise fee was not high enough and bound does not hold
- Overpayment stored with specific objects in data structure (e.g., nodes in a BST)

Three methods (cont.)

- Potential method
- Like accounting method
- Overpayment stored as "potential energy" of entire data structure (not specific objects)
- Must ensure that potential energy never falls below zero

Increment a binary counter

$\mathbf{A}(k-1)$	$\mathbf{A}(k-2)$						$\mathbf{A}(2)$	$\mathbf{A}(1)$	$\mathbf{A}(0)$
0	0	0	0	0	0	0	0	0	0

- K-bit value stored in array
- To increment value, flip bits right-to-left until you turn a 0 into a 1
- Each bit flip costs $O(1)$
- What is the amortized cost of counting from 0 to n ?

Increment a binary counter

$\mathbf{A}(\mathbf{k}-1)$	$\mathbf{A}(\mathbf{k}-2)$						$\mathbf{A}(\mathbf{2})$	$\mathbf{A}(\mathbf{1})$	$\mathbf{A}(\mathbf{0})$
0	0	0	0	0	0	0	0	0	0

- Worst case
- Flip k bits per increment
- Do that n times to count to n
- O(kn)
- But, most of the time we don't flip many bits

Increment a binary counter

$\mathbf{A}(\mathbf{k}-1)$	$\mathbf{A}(\mathbf{k}-\mathbf{2})$						$\mathbf{A}(2)$	$\mathbf{A}(1)$	$\mathbf{A}(\mathbf{0})$
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	1	0	0	0

Cost
1
2
1
3
1
2
1
4

Total: 15

Aggregate method

- A(0) flips every time, or n times
- A(1) flips every $2^{\text {nd }}$ time, or $n / 2$ times
- A(2) flips every $4^{\text {th }}$ time, or $n / 4$ times
- A(i) flips $n / 2^{i}$ times
- Total cost is $\Sigma_{i=0, k-1} n / 2^{i} \leq \Sigma_{i=0, \infty} n / 2^{i}=2 n=O(n)$
- So amortized cost is $\mathrm{O}(\mathrm{n}) / \mathrm{n}=\mathrm{O}(1)$

Accounting method

- Flipping a bit costs $\$ 1$ (one unit of computational work)
- Pay $\$ 2$ to change a 0 to a 1
- Use $\$ 1$ to pay for flipping the bit to 1
- Leave $\$ 1$ there to pay when/if the bit gets flipped back to 0
- Since only one bit gets flipped to 1 per increment, total cost is $\$ 2 n=O(n)$

Accounting method

$\mathbf{A}(\mathbf{k}-1)$	$\mathbf{A}(\mathbf{k}-2)$						$\mathbf{A}(2)$	$\mathbf{A}(1)$	$\mathbf{A}(\mathbf{0})$
0	0	0	0	0	0	0	0	0	0
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$

- Flip $A(0)$ to 1 and pay $\$ 1$ for flip and leave \$1 with that bit (total fee of \$2)

$\mathbf{A}(\mathbf{k}-1)$	$\mathbf{A}(\mathbf{k}-2)$						$\mathbf{A}(2)$	$\mathbf{A}(1)$	$\mathbf{A}(\mathbf{0})$
0	0	0	0	0	0	0	0	0	1
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 1$

Accounting method

$\mathbf{A}(\mathbf{k}-1)$	$\mathbf{A}(\mathbf{k}-2)$						$\mathbf{A}(2)$	$\mathbf{A}(1)$	$\mathbf{A}(\mathbf{0})$
0	0	0	0	0	0	0	0	0	1
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 1$

- Flip $A(0)$ to 0 and pay with the $\$ 1$ that was there already
- Flip A(1) to 1 and pay $\$ 1$ for flip and leave $\$ 1$ with that bit (total fee of \$2)

$\mathbf{A}(k-1)$	$\mathbf{A}(k-2)$						$\mathbf{A}(2)$	$\mathbf{A}(1)$	$\mathbf{A}(0)$
0	0	0	0	0	0	0	0	1	0
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 1$	$\$ 0$

Accounting method

$\mathbf{A}(\mathbf{k}-1)$	$\mathbf{A}(\mathbf{k}-2)$						$\mathbf{A}(2)$	$\mathbf{A}(1)$	$\mathbf{A}(\mathbf{0})$
0	0	0	0	0	0	0	0	1	0
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 1$	$\$ 0$

- Flip A(0) to 1 and pay $\$ 1$ for flip and leave $\$ 1$ with that bit (total fee of \$2)

$\mathbf{A}(\mathbf{k}-1)$	$\mathbf{A}(\mathbf{k}-2)$						$\mathbf{A}(2)$	$\mathbf{A}(1)$	$\mathbf{A}(\mathbf{0})$
0	0	0	0	0	0	0	0	1	1
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 1$	$\$ 1$

Accounting method

$\mathbf{A}(\mathbf{k}-1)$	$\mathbf{A}(\mathbf{k}-2)$						$\mathbf{A}(2)$	$\mathbf{A}(1)$	$\mathbf{A}(\mathbf{0})$
0	0	0	0	0	0	0	0	1	1
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 1$	$\$ 1$

- Flip $A(0)$ and $A(1)$ to 0 and pay with the $\$ \$$ that were there already
- Flip A(2) to 1 and pay $\$ 1$ for flip and leave $\$ 1$ with that bit (total fee of $\$ 2$)

$\mathbf{A}(k-1)$	$\mathbf{A}(\mathbf{k}-2)$						$\mathbf{A}(2)$	$\mathbf{A}(1)$	$\mathbf{A}(\mathbf{0})$
0	0	0	0	0	0	0	1	0	0
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 1$	$\$ 0$	$\$ 0$

Accounting method

- ... and so on
- We "overpay" by $\$ 1$ for flipping each 0 to 1
- Use the extra \$1 to pay for the cost of flipping it back to a zero
- Because a $\$ 2$ fee for each increment ensures that we have enough money stored to complete that increment, amortized cost is $\$ 2=\mathrm{O}(1)$ per operation

Potential method

- Record overpayments as "potential energy" (or just "potential") of entire data structure
- Contrast with accounting method where overpayments stored with specific parts of data structure (e.g., array cells)

Potential method

- Initial data structure is D_{0}
- Perform operations $\mathrm{i}=1,2,3, \ldots, \mathrm{n}$
- The actual cost of operation i is c_{i}
- The $i^{\text {ith }}$ operation yields data structure D_{i}
- $\Phi\left(D_{i}\right)=$ potential of D_{i}, or stored overpayment
- Amortized cost of the ith operation is
- $x_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$

Potential method

- If $\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)>0$ then x_{i} is an overcharge to $i^{\text {th }}$ operation
- We paid more than the actual cost of the operation
- If $\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)<0$ then x_{i} is an undercharge to the $\mathrm{i}^{\text {th }}$ operation
- We paid less than the actual cost of the operation, but covered the difference by spending potential

Potential method

- Total amortized cost:
$\square \Sigma x_{i}=\Sigma\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)=\Sigma c_{i}+\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)$
- Sum of actual costs plus whatever potential we added but didn't use
- Require that $\Phi\left(D_{i}\right) \geq 0$ so we always "pay in advance"

Potential method: Binary counter

- Need to choose potential function $\Phi\left(\mathrm{D}_{\mathrm{i}}\right)$
- Want to make $x_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$ small
- Usually have to be lucky or clever!
- Let $\Phi\left(D_{i}\right)=b_{i}$, the number of ones in the counter after the $\mathrm{i}^{\text {th }}$ operation
- Note that $\Phi\left(D_{i}\right) \geq 0$ so we're OK
- Recall $\$ 1$ stored with each 1 in the array when using the accounting method

Potential method: Binary counter

- Operation i resets (zeroes) t_{i} bits
- True cost of operation i is $t_{i}+1$
- The +1 is for setting a single bit to 1
- Number of ones in counter after $\mathrm{i}^{\text {th }}$ operation is therefore $b_{i}=b_{i-1}-t_{i}+1$

Potential method: Binary counter

- Number of ones in counter after ith operation is $b_{i}=b_{i-1}-t_{i}+1$
- Potential difference is
$\square \Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=b_{i}-b_{i-1}=\left(b_{i-1}-t_{i}+1\right)-b_{i-1}=1-t_{i}$
- Amortized cost is
- $x_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=\left(t_{i}+1\right)+\left(1-t_{i}\right)=2$
- If we pay just $\$ 2$ per operation, we always have enough potential to cover our actual costs per operation

Amortized analysis of splay trees

- Use the accounting method
- Store $\$ \$$ with nodes in tree
- First, some definitions
- Let n_{x} be the number of nodes in the subtree rooted by node x
- Let $r_{x}=$ floor $\left(\log \left(n_{x}\right)\right)$
- Called the rank of x

What we'll show

- If every node x always has r_{x} credits then splay operations require amortized O(lgn) time
- This is called the "credit invariant"
- For each operation (find, insert, delete) we'll have to show that we can maintain the credit invariant and pay for the true cost of the operation with O(lgn) $\$ \$$ per operation

First things first

- Consider a single splay step
- Single rotation (no grandparent), zig-zig, or zig
-zag
- Nodes x, y = parent(x), z = parent(y)
- r_{x}, r_{y}, and r_{z} are ranks before splay step
- $r_{x}^{\prime}, r_{y}^{\prime}$, and r_{z}^{\prime} are ranks after splay step

For example (zig-zig case)

What does a single splay step cost?

To pay for rotations (true cost of step) and maintain credit invariant

- $3\left(r_{x}^{\prime}-r_{x}\right)+1$ credits suffice for single rotation
- $3\left(r_{x}^{\prime}-r_{x}\right)$ credits suffice for zig-zig and zig-zag

What does a sequence of splay steps

 cost?- As node x moves up the tree, sum costs of individual steps
- r_{x}^{\prime} for one step becomes r_{x} for next step
- Summing over all steps to the root telescopes to become $3\left(r_{v}-r_{x}\right)+1$ where v is the root node
- $3\left(r_{x}^{\prime}-r_{x}\right)+3\left(r_{x}^{\prime \prime}-r_{x}^{\prime}\right)+3\left(r^{\prime \prime \prime}{ }_{x}-r^{\prime \prime}{ }_{x}\right) \ldots+1$
- Note +1 only required (sometimes) for last step

The punch line!

- $3\left(r_{v}-r_{x}\right)+1=O(\operatorname{logn})$
$\square v$ is root node of tree with n nodes
- $r_{v}=$ floor (logn)
- We can splay any node to the root in O(logn) time

Single rotation

To maintain credit invariant at all nodes need to add $\$ \Delta$

- Only r_{x} and r_{y} can change
- $\Delta=\left(r_{x}^{\prime}-r_{x}\right)+\left(r_{y}^{\prime}-r_{y}\right)$
- Note that $r_{x}^{\prime}=r_{y}$ so ...
- $\Delta=r_{y}^{\prime}-r_{x}$
- Note that $r_{x}^{\prime} \geq r_{y}^{\prime}$ so ...
- $\Delta=r_{y}^{\prime}-r_{x} \leq r_{x}^{\prime}-r_{x}$

Single rotation

To maintain credit invariant at all nodes it suffices to pay $\$\left(r^{\prime}{ }_{x}-r_{x}\right)$

- Still need to pay $O(1)$ for the rotation
- We allocated $3\left(r_{x}^{\prime}-r_{x}\right)+1$ credits
- If $r_{x}^{\prime}>r_{x}$ we've still got $2\left(r_{x}^{\prime}-r_{x}\right)>1$ credits to pay for the rotation
- The +1 is there in case $r_{x}^{\prime}=r_{x}$
- When can that happen?

Zig-zig

To maintain credit invariant at all nodes need to add $\$ \Delta$

- $\Delta=\left(r_{x}^{\prime}-r_{x}\right)+\left(r_{y}^{\prime}-r_{y}\right)+\left(r_{z}^{\prime}-r_{z}\right)$
- Note that $r_{x}^{\prime}=r_{z}$ so ...
$\cdot \Delta=r_{y}^{\prime}+r_{z}^{\prime}-r_{x}-r_{y}$
- Note that $r_{x}^{\prime} \geq r_{y}^{\prime}$ and $r_{x}^{\prime} \geq r_{z}^{\prime}$ and $r_{x} \leq r_{y}$ so ...
$\cdot \Delta=r_{y}^{\prime}+r_{z}^{\prime}-r_{x}-r_{y} \leq r_{x}^{\prime}+r_{x}^{\prime}-r_{x}-r_{x}=2\left(r_{x}^{\prime}-r_{x}\right)$

Zig-zig

To maintain credit invariant at all nodes it suffices to pay $\$ 2\left(r^{\prime}{ }_{x}-r_{x}\right)$

- Still need to pay $O(1)$ for the rotations
- If $r_{x}^{\prime}>r_{x}$ we can use $r_{x}^{\prime}-r_{x} \geq 1$ credits to pay for the two rotations for a total of $\$ 3\left(r_{x}^{\prime}-r_{x}\right)$
- Otherwise, $r^{\prime}=r_{x}$ so $r_{x}^{\prime}=r_{x}=r_{y}=r_{z}$
- Why?
- In this case, we can show that maintaining the invariant frees one or more credits that can be used to pay for the rotations

Zig-zag

- Analysis analogous to zig-zig step
- At most $\$ 3\left(r_{x}^{\prime}-r_{x}\right)$ required to maintain invariant and pay for rotations

