
CMSC 341

Amortized Analysis

What is amortized analysis?

  Consider a sequence of operations on a
 dynamic data structure
  Insert or delete in any (valid) order

  Worst case analysis asks: What is the most
 expensive any single operation can be?

  Amortized analysis asks: What is an upper
 bound on the average per-operation cost
 over the entire sequence?

10/6/2008 UMBC CMSC 341 Amortized Analysis 2

Nature of the amortized bound

  Amortized bounds are hard bounds
  They do not mean “on average (or most of

 the time) the bound holds”
  They do mean “for any sequence of n

 operations, the bound holds over that
 sequence”

10/6/2008 UMBC CMSC 341 Amortized Analysis 3

Three methods

  Aggregate method
  T(n) = upper bound on total cost of n operations
  Amortized cost is T(n)/n
  Some operations may cost more, a lot more, than

 T(n)/n
  If so, some operations must cost less
  But the average cost over the sequence will never

 exceed T(n)/n

10/6/2008 UMBC CMSC 341 Amortized Analysis 4

Three methods

  Accounting method
  Each operation pays a “fee” (cost of operation)
  Overcharge some operations and store extra as

 pre-payment for later operations
  Amortized cost is (total of fees paid)/n
  Must ensure bank account never negative,

 otherwise fee was not high enough and bound
 does not hold

  Overpayment stored with specific objects in data
 structure (e.g., nodes in a BST)

10/6/2008 UMBC CMSC 341 Amortized Analysis 5

Three methods (cont.)

  Potential method
  Like accounting method
  Overpayment stored as “potential energy” of

 entire data structure (not specific objects)
  Must ensure that potential energy never falls

 below zero

10/6/2008 UMBC CMSC 341 Amortized Analysis 6

Increment a binary counter

10/6/2008 UMBC CMSC 341 Amortized Analysis 7

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 0

  K-bit value stored in array
  To increment value, flip bits right-to-left until

 you turn a 0 into a 1
  Each bit flip costs O(1)
  What is the amortized cost of counting from 0

 to n?

Increment a binary counter

10/6/2008 UMBC CMSC 341 Amortized Analysis 8

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 0

  Worst case
  Flip k bits per increment
  Do that n times to count to n
  O(kn)

  But, most of the time we don’t flip many bits

Increment a binary counter

10/6/2008 UMBC CMSC 341 Amortized Analysis 9

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0

Cost

1

2

2

3

1

1

1
4

Total: 15

Aggregate method

  A(0) flips every time, or n times
  A(1) flips every 2nd time, or n/2 times
  A(2) flips every 4th time, or n/4 times
  A(i) flips n/2i times

  Total cost is Σi=0,k-1n/2i ≤ Σi=0,∞n/2i = 2n = O(n)
  So amortized cost is O(n)/n = O(1)

10/6/2008 UMBC CMSC 341 Amortized Analysis 10

Accounting method

  Flipping a bit costs $1 (one unit of
 computational work)

  Pay $2 to change a 0 to a 1
  Use $1 to pay for flipping the bit to 1
  Leave $1 there to pay when/if the bit gets flipped

 back to 0
  Since only one bit gets flipped to 1 per

 increment, total cost is $2n = O(n)

10/6/2008 UMBC CMSC 341 Amortized Analysis 11

Accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis 12

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 0
$0 $0 $0 $0 $0 $0 $0 $0 $0 $0

  Flip A(0) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2)

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 1
$0 $0 $0 $0 $0 $0 $0 $0 $0 $1

Accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis 13

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 1
$0 $0 $0 $0 $0 $0 $0 $0 $0 $1

  Flip A(0) to 0 and pay with the $1 that was
 there already

  Flip A(1) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2)

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 1 0
$0 $0 $0 $0 $0 $0 $0 $0 $1 $0

Accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis 14

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 1 0
$0 $0 $0 $0 $0 $0 $0 $0 $1 $0

  Flip A(0) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2)

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 1 1
$0 $0 $0 $0 $0 $0 $0 $0 $1 $1

Accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis 15

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 1 1
$0 $0 $0 $0 $0 $0 $0 $0 $1 $1

  Flip A(0) and A(1) to 0 and pay with the $$
 that were there already

  Flip A(2) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2)

A(k-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 1 0 0
$0 $0 $0 $0 $0 $0 $0 $1 $0 $0

Accounting method

  … and so on
  We “overpay” by $1 for flipping each 0 to 1
  Use the extra $1 to pay for the cost of flipping

 it back to a zero
  Because a $2 fee for each increment ensures

 that we have enough money stored to
 complete that increment, amortized cost is
 $2 = O(1) per operation

10/6/2008 UMBC CMSC 341 Amortized Analysis 16

Potential method

  Record overpayments as “potential
 energy” (or just “potential”) of entire data
 structure

  Contrast with accounting method where
 overpayments stored with specific parts of
 data structure (e.g., array cells)

10/6/2008 UMBC CMSC 341 Amortized Analysis 17

Potential method

  Initial data structure is D0

  Perform operations i = 1, 2, 3, …, n
  The actual cost of operation i is ci

  The ith operation yields data structure Di

  Φ(Di) = potential of Di, or stored overpayment
  Amortized cost of the ith operation is

  xi = ci + Φ(Di) - Φ(Di-1)

10/6/2008 UMBC CMSC 341 Amortized Analysis 18

Potential method

  If Φ(Di) - Φ(Di-1) > 0 then xi is an overcharge
 to ith operation
  We paid more than the actual cost of the

 operation

  If Φ(Di) - Φ(Di-1) < 0 then xi is an undercharge
 to the ith operation
  We paid less than the actual cost of the operation,

 but covered the difference by spending potential

10/6/2008 UMBC CMSC 341 Amortized Analysis 19

Potential method

  Total amortized cost:
  Σxi = Σ(ci + Φ(Di) - Φ(Di-1)) = Σci + Φ(Dn) - Φ(D0)
  Sum of actual costs plus whatever potential we

 added but didn’t use

  Require that Φ(Di) ≥ 0 so we always “pay in
 advance”

10/6/2008 UMBC CMSC 341 Amortized Analysis 20

Potential method: Binary counter

  Need to choose potential function Φ(Di)
  Want to make xi = ci + Φ(Di) - Φ(Di-1) small
  Usually have to be lucky or clever!
  Let Φ(Di) = bi, the number of ones in the

 counter after the ith operation
  Note that Φ(Di) ≥ 0 so we’re OK
  Recall $1 stored with each 1 in the array when

 using the accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis 21

Potential method: Binary counter

  Operation i resets (zeroes) ti bits
  True cost of operation i is ti + 1

  The +1 is for setting a single bit to 1
  Number of ones in counter after ith operation

 is therefore bi = bi-1 – ti + 1

10/6/2008 UMBC CMSC 341 Amortized Analysis 22

Potential method: Binary counter

  Number of ones in counter after ith operation
 is bi = bi-1 – ti + 1

  Potential difference is
  Φ(Di) - Φ(Di-1) = bi – bi-1 = (bi-1–ti+1) – bi-1 = 1 – ti

  Amortized cost is
  xi = ci + Φ(Di) - Φ(Di-1) = (ti + 1) + (1 – ti) = 2
  If we pay just $2 per operation, we always have

 enough potential to cover our actual costs per
 operation

10/6/2008 UMBC CMSC 341 Amortized Analysis 23

Amortized analysis of splay trees

  Use the accounting method
  Store $$ with nodes in tree

  First, some definitions
  Let nx be the number of nodes in the subtree

 rooted by node x
  Let rx = floor(log(nx))

  Called the rank of x

10/6/2008 UMBC CMSC 341 Amortized Analysis 24

What we’ll show

  If every node x always has rx credits then
 splay operations require amortized O(lgn)
 time

  This is called the “credit invariant”
  For each operation (find, insert, delete) we’ll

 have to show that we can maintain the credit
 invariant and pay for the true cost of the
 operation with O(lgn) $$ per operation

10/6/2008 UMBC CMSC 341 Amortized Analysis 25

First things first

  Consider a single splay step
  Single rotation (no grandparent), zig-zig, or zig

-zag
  Nodes x, y = parent(x), z = parent(y)
  rx, ry, and rz are ranks before splay step
  r’x, r’y,and r’z are ranks after splay step

10/6/2008 UMBC CMSC 341 Amortized Analysis 26

For example (zig-zig case)

10/6/2008 UMBC CMSC 341 Amortized Analysis 27

x

A

y

B

C

y

B z

C D

rx

ry

r’x

r’y

z

D

rz

x

A
r’z

What does a single splay step cost?

  To pay for rotations (true cost of step) and
 maintain credit invariant
  3(r’x – rx) + 1 credits suffice for single rotation
  3(r’x – rx) credits suffice for zig-zig and zig-zag

10/6/2008 UMBC CMSC 341 Amortized Analysis 28

What does a sequence of splay steps
 cost?
  As node x moves up the tree, sum costs of

 individual steps
  r’x for one step becomes rx for next step
  Summing over all steps to the root telescopes

 to become 3(rv – rx) + 1 where v is the root
 node
  3(r’x – rx) + 3(r’’x – r’x) + 3(r’’’x – r’’x) … + 1
  Note +1 only required (sometimes) for last step

10/6/2008 UMBC CMSC 341 Amortized Analysis 29

The punch line!

  3(rv – rx) + 1 = O(logn)
  v is root node of tree with n nodes
  rv = floor(logn)

  We can splay any node to the root in O(logn)
 time

10/6/2008 UMBC CMSC 341 Amortized Analysis 30

Single rotation

10/6/2008 UMBC CMSC 341 Amortized Analysis 31

x

A

y

B

C

x

A y

B C

rx

ry r’x

r’y

To maintain credit invariant at all nodes need to add $Δ
•  Only rx and ry can change
•  Δ = (r’x – rx) + (r’y – ry)
•  Note that r’x = ry so …
•  Δ = r’y – rx
•  Note that r’x ≥ r’y so …
•  Δ = r’y – rx ≤ r’x - rx

Single rotation

10/6/2008 UMBC CMSC 341 Amortized Analysis 32

x

A

y

B

C

x

A y

B C

rx

ry r’x

r’y

To maintain credit invariant at all nodes it suffices to pay $(r’x – rx)
•  Still need to pay O(1) for the rotation
•  We allocated 3(r’x – rx) + 1 credits
•  If r’x > rx we’ve still got 2(r’x – rx) > 1 credits to pay for the rotation
•  The +1 is there in case r’x = rx

•  When can that happen?

Zig-zig

10/6/2008 UMBC CMSC 341 Amortized Analysis 33

x

A

y

B

C

y

B z

C D

rx

ry

r’x

r’y

To maintain credit invariant at all nodes need to add $Δ
• Δ = (r’x – rx) + (r’y – ry) + (r’z – rz)
• Note that r’x = rz so …
• Δ = r’y + r’z – rx – ry
• Note that r’x ≥ r’y and r’x ≥ r’z and rx ≤ ry so …
• Δ = r’y + r’z – rx – ry ≤ r’x + r’x – rx – rx = 2(r’x – rx)

z

D

rz

x

A
r’z

Zig-zig

10/6/2008 UMBC CMSC 341 Amortized Analysis 34

x

A

y

B

C

y

B z

C D

rx

ry

r’x

r’y

To maintain credit invariant at all nodes it suffices to pay $2(r’x – rx)
•  Still need to pay O(1) for the rotations
•  If r’x > rx we can use r’x – rx ≥ 1 credits to pay for the two

rotations for a total of $3(r’x – rx)
•  Otherwise, r’x = rx so r’x = rx = ry = rz

•  Why?
•  In this case, we can show that maintaining the invariant frees

one or more credits that can be used to pay for the rotations

z

D

rz

x

A
r’z

Zig-zag

10/6/2008 UMBC CMSC 341 Amortized Analysis 35

x

A y

C B

y

C

z

A

•  Analysis analogous to zig-zig step
•  At most $3(r’x – rx) required to maintain invariant and

pay for rotations

z

D

x

D B

