CMSC 341

Amortized Analysis

What 1s amortized analysis?

Consider a sequence of operations on a
dynamic data structure

o Insert or delete in any (valid) order
Worst case analysis asks: What is the most
expensive any single operation can be?

Amortized analysis asks: What is an upper
bound on the average per-operation cost
over the entire sequence?

10/6/2008 UMBC CMSC 341 Amortized Analysis

Nature of the amortized bound

Amortized bounds are hard bounds

T
t

T

ney do not mean “on average (or most of
ne time) the bound holds”

ney do mean “for any sequence of n

operations, the bound holds over that
sequence’

10/6/2008 UMBC CMSC 341 Amortized Analysis

Three methods

Aggregate method

o T(n) = upper bound on total cost of n operations
o Amortized cost is T(n)/n

o Some operations may cost more, a lot more, than
T(n)/n

o If so, some operations must cost less

o But the average cost over the sequence will never
exceed T(n)/n

10/6/2008 UMBC CMSC 341 Amortized Analysis 4

Three methods

Accounting method

o Each operation pays a “fee” (cost of operation)

o Overcharge some operations and store extra as
pre-payment for later operations

o Amortized cost is (total of fees paid)/n

o Must ensure bank account never negative,
otherwise fee was not high enough and bound
does not hold

o Overpayment stored with specific objects in data
structure (e.g., nodes in a BST)

10/6/2008 UMBC CMSC 341 Amortized Analysis

Three methods (cont.)

Potential method

o Like accounting method

o Overpayment stored as “potential energy” of
entire data structure (not specific objects)

o Must ensure that potential energy never falls
below zero

10/6/2008 UMBC CMSC 341 Amortized Analysis

Increment a binary counter

Ak-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 0

K-bit value stored in array

To increment value, flip bits right-to-left until
you turna 0 into a 1

Each bit flip costs O(1)

What is the amortized cost of counting from O
to n?

10/6/2008 UMBC CMSC 341 Amortized Analysis

Increment a binary counter

Ak-1) A(k-2) A(2) A(1) A(0)

0 0 0 0 0 0 0 0 0 0

Worst case

o Flip k bits per increment
o Do that n times to count to n
o O(kn)

But, most of the time we don't flip many bits

10/6/2008 UMBC CMSC 341 Amortized Analysis

Increment a binary counter

A(k-1) A(k-2) A(2) A(1) A(0) Cost
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0 0 3
0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1 1 0 2
0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 0 0 0 4
Total: 15

10/6/2008 UMBC CMSC 341 Amortized Analysis 9

Aggoregate method

A(O) flips every time, or n times
A(1) flips every 2" time, or n/2 times
A(2) flips every 4t time, or n/4 times
A(i) flips n/2' times

Total costis 2,4, 1N/2' < 2 _; .n/2"=2n = O(n)
So amortized cost is O(n)/n = O(1)

10/6/2008 UMBC CMSC 341 Amortized Analysis 10

Accounting method

Flipping a bit costs $1 (one unit of
computational work)

Pay $2 to change a0 to a 1

o Use $1 to pay for flipping the bit to 1

o Leave $1 there to pay when/if the bit gets flipped
back to O

Since only one bit gets flipped to 1 per
increment, total cost is $2n = O(n)

10/6/2008 UMBC CMSC 341 Amortized Analysis 11

Accounting method

A(k-1) A(k-2) A(2) A(1) A(0)
0 0 0 0 0 0 0 0 0 0
$0 $0 $0 $0 $0 $0 $0 $0 $0 $0

Flip A(0) to 1 and pay $1 for flip and leave $1
with that bit (total fee of $2)

Ak-1) A(k-2) A(2) A(1) A(0)
0 0 0 0 0 0 0 0 0 1
$0 $0 $0 $0 $0 $0 $0 $0 $0 $1

10/6/2008 UMBC CMSC 341 Amortized Analysis

Accounting method

Ak-1) A(k-2) A(2) A(1) A(0)
0 0 0 0 0 0 0 0 0 1
$0 $0 $0 $0 $0 $0 $0 $0 $0 $1

Flip A(0) to 0 and pay with the $1 that was
there already

Flip A(1) to 1 and pay $1 for flip and leave $1
with that bit (total fee of $2)

A(k-1) A(k-2) A(2) A(1) A(0)
0 0 0 0 0 0 0 0 1 0
$0 $0 $0 $0 $0 $0 $0 $0 $1 $0

10/6/2008 UMBC CMSC 341 Amortized Analysis 13

Accounting method

Ak-1) A(k-2) A(2) A(1) A(0)
0 0 0 0 0 0 0 0 1 0
$0 $0 $0 $0 $0 $0 $0 $0 $1 $0

Flip A(0) to 1 and pay $1 for flip and leave $1
with that bit (total fee of $2)

A(k-1) A(k-2) A(2) A(1) A(0)
0 0 0 0 0 0 0 0 1 1
$0 $0 $0 $0 $0 $0 $0 $0 $1 $1

10/6/2008 UMBC CMSC 341 Amortized Analysis

Accounting method

Ak-1) A(k-2) A(2) A(1) A(0)
0 0 0 0 0 0 0 0 1 1
$0 $0 $0 $0 $0 $0 $0 $0 $1 $1

Flip A(0) and A(1) to 0 and pay with the $$
that were there already
Flip A(2) to 1 and pay $1 for flip and leave $1
with that bit (total fee of $2)

Ak-1) A(k-2) A(2) A1) A(0)

0 0 0 0 0 0 0 1 0 0
$0 $0 $O SO0 $0 0 SO $1 0 %O

10/6/2008 UMBC CMSC 341 Amortized Analysis 15

Accounting method

... and so on
We “overpay” by $1 for flipping each 0 to 1

Use the extra $1 to pay for the cost of flipping
it back to a zero

Because a $2 fee for each increment ensures
that we have enough money stored to
complete that increment, amortized cost is
$2 = O(1) per operation

10/6/2008 UMBC CMSC 341 Amortized Analysis 16

Potential method

Record overpayments as “potential
energy” (or just “potential”) of entire data
structure

Contrast with accounting method where
overpayments stored with specific parts of
data structure (e.g., array cells)

10/6/2008 UMBC CMSC 341 Amortized Analysis

17

Potential method

Initial data structure is D,

Perform operationsi=1, 2, 3, ..., n
The actual cost of operation i is c.

The ith operation yields data structure D

®(D.) = potential of D, or stored overpayment

Amortized cost of the it" operation is
0 X =¢+P(D)-PD,.,)

10/6/2008 UMBC CMSC 341 Amortized Analysis 18

Potential method

If ®(D.) - (D,_;) > 0 then x; is an overcharge
to it operation

o We paid more than the actual cost of the
operation

If ®(D,) - (D, ;) <0 then x; is an undercharge
to the it operation

o We paid less than the actual cost of the operation,
but covered the difference by spending potential

10/6/2008 UMBC CMSC 341 Amortized Analysis 19

Potential method

Total amortized cost:
03X, = (¢, + P(D) - (D)) = Z¢; + B(D,) - D(Dy)

o Sum of actual costs plus whatever potential we
added but didn’t use

Require that ®(D,) = 0 so we always “pay in
advance”

10/6/2008 UMBC CMSC 341 Amortized Analysis

20

Potential method: Binary counter

Need to choose potential function ®(D))
Want to make x. = ¢, + ®(D,) - ¢(D. ,) small
Usually have to be lucky or clever!

Let §(D;) = b,, the number of ones in the
counter after the it operation

o Note that (D) = 0 so we're OK

o Recall $1 stored with each 1 in the array when
using the accounting method

10/6/2008 UMBC CMSC 341 Amortized Analysis

21

Potential method: Binary counter

Operation i resets (zeroes) t. bits

True cost of operationiis t + 1
o The +1 is for setting a single bit to 1

Number of ones in counter after it operation
s therefore b. = b, , —t + 1

10/6/2008 UMBC CMSC 341 Amortized Analysis 22

Potential method: Binary counter

Number of ones in counter after it" operation
isb=b,—-t+1

Potential difference is

0 ®(Dy) - ®(Dy4) =b;— by = (b—ti+1) = by =1 -4
Amortized cost is

0 X =+t PD)-PD)=(t+1)+(1-1)=2

o If we pay just $2 per operation, we always have

enough potential to cover our actual costs per
operation

10/6/2008 UMBC CMSC 341 Amortized Analysis

23

Amortized analysis of splay trees

Use the accounting method
o Store $$ with nodes in tree

First, some definitions

o Let n, be the number of nodes in the subtree
rooted by node x

o Letr, = floor(log(n,))
Called the rank of x

10/6/2008 UMBC CMSC 341 Amortized Analysis

24

What we’ll show

If every node x always has r, credits then
splay operations require amortized O(Ign)
time

This is called the “credit invariant”

For each operation (find, insert, delete) we'll
have to show that we can maintain the credit
invariant and pay for the true cost of the
operation with O(Ign) $$ per operation

10/6/2008 UMBC CMSC 341 Amortized Analysis 25

First things first

Consider a single splay step

o Single rotation (no grandparent), zig-zig, or zig
-zag

2 Nodes x, y = parent(x), z = parent(y)
a ry, Iy, and r, are ranks before splay step
o ry, ry,and r, are ranks after splay step

10/6/2008 UMBC CMSC 341 Amortized Analysis

26

For example (zig-zig case)

I My

ONENON

JORV:-NY/ NS ON
JORUY o}
A A N

10/6/2008 UMBC CMSC 341 Amortized Analysis

What does a single splay step cost?

To pay for rotations (true cost of step) and
maintain credit invariant

o 3(r', —r,) + 1 credits suffice for single rotation
o 3(r', —r,) credits suffice for zig-zig and zig-zag

10/6/2008 UMBC CMSC 341 Amortized Analysis 28

What does a sequence of splay steps
costr?

As node x moves up the tree, sum costs of
individual steps

r', for one step becomes r, for next step

Summing over all steps to the root telescopes
to become 3(r, —r,) + 1 where v is the root

node
o 3(r,—r)+3(r,—r,)+3(r',—r’,)..+1
o Note +1 only required (sometimes) for last step

10/6/2008 UMBC CMSC 341 Amortized Analysis 29

The punch line!

3(r,—r,) +1=0(logn)
o v is root node of tree with n nodes
o r, = floor(logn)

We can splay any node to the root in O(logn)
time

10/6/2008 UMBC CMSC 341 Amortized Analysis

30

Single rotation

ry® @rx r,
A AW
/A /o\ o\ /e\

To maintain credit invariant at all nodes need to add $A
* Only r, and r, can change
* A= (=) + ()

Note that r’y, =r, so ...

« A=ry,—r,

Note thatr’, 2r’, so ...

A=r,—r,sr, -1,

10/6/2008 UMBC CMSC 341 Amortized Analysis

31

Single rotation

ry® @rx r,
A AW
/A /o\ o\ /e\

To maintain credit invariant at all nodes it suffices to pay $(r', —r,)
« Still need to pay O(1) for the rotation
» We allocated 3(r’, —r,) + 1 credits
- Ifr’, >r,we've still got 2(r’, —r,) > 1 credits to pay for the rotation
 The +1isthereincaser, =r,
« When can that happen?

10/6/2008 UMBC CMSC 341 Amortized Analysis 32

/1g-71g : -

10/6/2008

Q@ @

JORV-N/ NSO
ORI o}
A £\ /A 2o\

To maintain credit invariant at all nodes need to add $A
A= (r’x - rx) + (r’y - r.y) + (r,z o rz)

*Note thatr’', =r, so ...

A=r, +r,—r.—r,

‘Note thatr, 2r' and r', 2r',andr,<r, so ...

A=r +r,—r,—r sr,+r,—r—r,=2(r,—r,)

UMBC CMSC 341 Amortized Analysis 33

/1g-71g g o o .
oA AW
NORVN (5)
/AN /B\ [\ /o\

To maintain credit invariant at all nodes it suffices to pay $2(r’, —r,)

« Still need to pay O(1) for the rotations

« If r', >r,we can use r, —r, 2 1 credits to pay for the two
rotations for a total of $3(r’, —r,)

* Otherwise, r', =r,sor, =r=r,=r,

« Why?

* In this case, we can show that maintaining the invariant frees

one or more credits that can be used to pay for the rotations

10/6/2008 UMBC CMSC 341 Amortized Analysis 34

/1g-z7ag

(3 ©
NSO OO

ORI A A A A

o\ /e\

» Analysis analogous to zig-zig step
« At most $3(r’, —r,) required to maintain invariant and
pay for rotations

10/6/2008 UMBC CMSC 341 Amortized Analysis

35

