
CMSC 341 

Amortized Analysis 



What is amortized analysis? 

  Consider a sequence of operations on a
 dynamic data structure 
  Insert or delete in any (valid) order 

  Worst case analysis asks: What is the most
 expensive any single operation can be? 

  Amortized analysis asks: What is an upper
 bound on the average per-operation cost
 over the entire sequence? 
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Nature of the amortized bound 

  Amortized bounds are hard bounds 
  They do not mean “on average (or most of

 the time) the bound holds” 
  They do mean “for any sequence of n

 operations, the bound holds over that
 sequence” 
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Three methods 

  Aggregate method 
  T(n) = upper bound on total cost of n operations 
  Amortized cost is T(n)/n 
  Some operations may cost more, a lot more, than

 T(n)/n 
  If so, some operations must cost less 
  But the average cost over the sequence will never

 exceed T(n)/n 

10/6/2008 UMBC CMSC 341 Amortized Analysis 4 



Three methods 

  Accounting method 
  Each operation pays a “fee” (cost of operation) 
  Overcharge some operations and store extra as

 pre-payment for later operations 
  Amortized cost is (total of fees paid)/n 
  Must ensure bank account never negative,

 otherwise fee was not high enough and bound
 does not hold 

  Overpayment stored with specific objects in data
 structure (e.g., nodes in a BST) 
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Three methods (cont.) 

  Potential method 
  Like accounting method 
  Overpayment stored as “potential energy” of 

 entire data structure (not specific objects) 
  Must ensure that potential energy never falls

 below zero 
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Increment a binary counter 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 0 

  K-bit value stored in array 
  To increment value, flip bits right-to-left until

 you turn a 0 into a 1 
  Each bit flip costs O(1) 
  What is the amortized cost of counting from 0

 to n? 



Increment a binary counter 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 0 

  Worst case 
  Flip k bits per increment 
  Do that n times to count to n 
  O(kn) 

  But, most of the time we don’t flip many bits 



Increment a binary counter 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 1 
0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 1 1 1 
0 0 0 0 0 0 1 0 0 0 

Cost 

1 

2 

2 

3 

1 

1 

1 
4 

Total: 15 



Aggregate method 

  A(0)  flips every time, or n times 
  A(1) flips every 2nd time, or n/2 times 
  A(2) flips every 4th time, or n/4 times 
  A(i) flips n/2i times 

  Total cost is Σi=0,k-1n/2i ≤ Σi=0,∞n/2i = 2n = O(n) 
  So amortized cost is O(n)/n = O(1) 

10/6/2008 UMBC CMSC 341 Amortized Analysis 10 



Accounting method 

  Flipping a bit costs $1 (one unit of
 computational work) 

  Pay $2 to change a 0 to a 1 
  Use $1 to pay for flipping the bit to 1 
  Leave $1 there to pay when/if the bit gets flipped

 back to 0 
  Since only one bit gets flipped to 1 per

 increment, total cost is $2n = O(n) 
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Accounting method 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 0 
$0 $0 $0 $0 $0 $0 $0 $0 $0 $0 

  Flip A(0) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2) 

A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 1 
$0 $0 $0 $0 $0 $0 $0 $0 $0 $1 



Accounting method 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 1 
$0 $0 $0 $0 $0 $0 $0 $0 $0 $1 

  Flip A(0) to 0 and pay with the $1 that was
 there already 

  Flip A(1) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2) 

A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 1 0 
$0 $0 $0 $0 $0 $0 $0 $0 $1 $0 



Accounting method 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 1 0 
$0 $0 $0 $0 $0 $0 $0 $0 $1 $0 

  Flip A(0) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2) 

A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 1 1 
$0 $0 $0 $0 $0 $0 $0 $0 $1 $1 



Accounting method 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 1 1 
$0 $0 $0 $0 $0 $0 $0 $0 $1 $1 

  Flip A(0) and A(1) to 0 and pay with the $$
 that were there already 

  Flip A(2) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2) 

A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 1 0 0 
$0 $0 $0 $0 $0 $0 $0 $1 $0 $0 



Accounting method 

  … and so on 
  We “overpay” by $1 for flipping each 0 to 1 
  Use the extra $1 to pay for the cost of flipping

 it back to a zero 
  Because a $2 fee for each increment ensures

 that we have enough money stored to
 complete that increment, amortized cost is
 $2 = O(1) per operation 
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Potential method 

  Record overpayments as “potential
 energy” (or just “potential”) of entire data
 structure 

  Contrast with accounting method where
 overpayments stored with specific parts of
 data structure (e.g., array cells) 
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Potential method 

  Initial data structure is D0 

  Perform operations i = 1, 2, 3, …, n 
  The actual cost of operation i is ci 

  The ith operation yields data structure Di 

  Φ(Di) = potential of Di, or stored overpayment 
  Amortized cost of the ith operation is  

  xi = ci + Φ(Di) - Φ(Di-1)  
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Potential method 

  If Φ(Di) - Φ(Di-1) > 0 then xi is an overcharge
 to ith operation 
  We paid more than the actual cost of the

 operation 

  If Φ(Di) - Φ(Di-1) < 0 then xi is an undercharge
 to the ith operation 
  We paid less than the actual cost of the operation,

 but covered the difference by spending potential 
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Potential method 

  Total amortized cost: 
  Σxi = Σ(ci + Φ(Di) - Φ(Di-1)) = Σci + Φ(Dn) - Φ(D0) 
  Sum of actual costs plus whatever potential we

 added but didn’t use 

  Require that Φ(Di) ≥ 0 so we always “pay in
 advance” 
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Potential method: Binary counter 

  Need to choose potential function Φ(Di) 
  Want to make xi = ci + Φ(Di) - Φ(Di-1) small 
  Usually have to be lucky or clever! 
  Let Φ(Di) = bi, the number of ones in the

 counter after the ith operation 
  Note that Φ(Di) ≥ 0 so we’re OK 
  Recall $1 stored with each 1 in the array when

 using the accounting method 
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Potential method: Binary counter 

  Operation i resets (zeroes) ti bits 
  True cost of operation i is ti + 1  

  The +1 is for setting a single bit to 1 
  Number of ones in counter after ith operation

 is therefore bi = bi-1 – ti + 1 
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Potential method: Binary counter 

  Number of ones in counter after ith operation
 is bi = bi-1 – ti + 1 

  Potential difference is 
  Φ(Di) - Φ(Di-1) = bi – bi-1 = (bi-1–ti+1) – bi-1 = 1 – ti 

  Amortized cost is  
  xi = ci + Φ(Di) - Φ(Di-1) = (ti + 1) + (1 – ti) = 2 
  If we pay just $2 per operation, we always have

 enough potential to cover our actual costs per
 operation 
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Amortized analysis of splay trees 

  Use the accounting method 
  Store $$ with nodes in tree 

  First, some definitions 
  Let nx be the number of nodes in the subtree

 rooted by node x 
  Let rx = floor(log(nx)) 

  Called the rank of x 
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What we’ll show 

  If every node x always has rx credits then
 splay operations require amortized O(lgn)
 time 

  This is called the “credit invariant” 
  For each operation (find, insert, delete) we’ll

 have to show that we can maintain the credit
 invariant and pay for the true cost of the
 operation with O(lgn) $$ per operation 
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First things first 

  Consider a single splay step 
  Single rotation (no grandparent), zig-zig, or zig

-zag 
  Nodes x, y = parent(x), z = parent(y) 
  rx, ry, and rz are ranks before splay step 
  r’x, r’y,and r’z are ranks after splay step 
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For example (zig-zig case) 

10/6/2008 UMBC CMSC 341 Amortized Analysis 27 

x 

A 

y 

B 

C 

y 

B z 

C D 

rx 

ry 

r’x 

r’y 

z 

D 

rz 

x 

A 
r’z 



What does a single splay step cost? 

  To pay for rotations (true cost of step) and
 maintain credit invariant 
  3(r’x – rx) + 1 credits suffice for single rotation 
  3(r’x – rx) credits suffice for zig-zig and zig-zag 

10/6/2008 UMBC CMSC 341 Amortized Analysis 28 



What does a sequence of splay steps
 cost?  
  As node x moves up the tree, sum costs of

 individual steps 
  r’x for one step becomes rx for next step 
  Summing over all steps to the root telescopes

 to become 3(rv – rx) + 1 where v is the root
 node 
  3(r’x – rx) + 3(r’’x – r’x) + 3(r’’’x – r’’x) … + 1 
  Note +1 only required (sometimes) for last step 
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The punch line! 

  3(rv – rx) + 1 = O(logn) 
  v is root node of tree with n nodes 
  rv = floor(logn) 

  We can splay any node to the root in O(logn)
 time 
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Single rotation 
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To maintain credit invariant at all nodes need to add $Δ 
•  Only rx and ry can change 
•  Δ = (r’x – rx) + (r’y – ry) 
•  Note that r’x = ry so … 
•   Δ = r’y – rx 
•  Note that r’x ≥ r’y so … 
•  Δ = r’y – rx ≤ r’x - rx 



Single rotation 
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To maintain credit invariant at all nodes it suffices to pay $(r’x – rx) 
•  Still need to pay O(1) for the rotation 
•  We allocated 3(r’x – rx) + 1 credits 
•  If r’x > rx we’ve still got 2(r’x – rx) > 1 credits to pay for the rotation 
•  The +1 is there in case r’x = rx 

•  When can that happen? 



Zig-zig 
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To maintain credit invariant at all nodes need to add $Δ 
• Δ = (r’x – rx) + (r’y – ry) + (r’z – rz) 
• Note that r’x = rz so … 
• Δ = r’y + r’z – rx – ry 
• Note that r’x ≥ r’y and r’x ≥ r’z and rx ≤ ry so … 
• Δ = r’y + r’z – rx – ry  ≤ r’x + r’x – rx – rx = 2(r’x – rx) 
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Zig-zig 

10/6/2008 UMBC CMSC 341 Amortized Analysis 34 

x 

A 

y 

B 

C 

y 

B z 

C D 

rx 

ry 

r’x 

r’y 

To maintain credit invariant at all nodes it suffices to pay $2(r’x – rx) 
•  Still need to pay O(1) for the rotations 
•  If r’x > rx we can use r’x – rx ≥ 1 credits to pay for the two 

rotations for a total of $3(r’x – rx)  
•  Otherwise, r’x = rx so r’x = rx = ry = rz 

•  Why? 
•  In this case, we can show that maintaining the invariant frees 

one or more credits that can be used to pay for the rotations 
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Zig-zag 
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•  Analysis analogous to zig-zig step 
•  At most $3(r’x – rx) required to maintain invariant and 

pay for rotations 
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