
CMSC 341 

Amortized Analysis 



What is amortized analysis? 

  Consider a sequence of operations on a
 dynamic data structure 
  Insert or delete in any (valid) order 

  Worst case analysis asks: What is the most
 expensive any single operation can be? 

  Amortized analysis asks: What is an upper
 bound on the average per-operation cost
 over the entire sequence? 
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Nature of the amortized bound 

  Amortized bounds are hard bounds 
  They do not mean “on average (or most of

 the time) the bound holds” 
  They do mean “for any sequence of n

 operations, the bound holds over that
 sequence” 

10/6/2008 UMBC CMSC 341 Amortized Analysis 3 



Three methods 

  Aggregate method 
  T(n) = upper bound on total cost of n operations 
  Amortized cost is T(n)/n 
  Some operations may cost more, a lot more, than

 T(n)/n 
  If so, some operations must cost less 
  But the average cost over the sequence will never

 exceed T(n)/n 
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Three methods 

  Accounting method 
  Each operation pays a “fee” (cost of operation) 
  Overcharge some operations and store extra as

 pre-payment for later operations 
  Amortized cost is (total of fees paid)/n 
  Must ensure bank account never negative,

 otherwise fee was not high enough and bound
 does not hold 

  Overpayment stored with specific objects in data
 structure (e.g., nodes in a BST) 
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Three methods (cont.) 

  Potential method 
  Like accounting method 
  Overpayment stored as “potential energy” of 

 entire data structure (not specific objects) 
  Must ensure that potential energy never falls

 below zero 
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Increment a binary counter 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 0 

  K-bit value stored in array 
  To increment value, flip bits right-to-left until

 you turn a 0 into a 1 
  Each bit flip costs O(1) 
  What is the amortized cost of counting from 0

 to n? 



Increment a binary counter 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 0 

  Worst case 
  Flip k bits per increment 
  Do that n times to count to n 
  O(kn) 

  But, most of the time we don’t flip many bits 



Increment a binary counter 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 1 
0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 1 1 1 
0 0 0 0 0 0 1 0 0 0 

Cost 

1 

2 

2 

3 

1 

1 

1 
4 

Total: 15 



Aggregate method 

  A(0)  flips every time, or n times 
  A(1) flips every 2nd time, or n/2 times 
  A(2) flips every 4th time, or n/4 times 
  A(i) flips n/2i times 

  Total cost is Σi=0,k-1n/2i ≤ Σi=0,∞n/2i = 2n = O(n) 
  So amortized cost is O(n)/n = O(1) 
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Accounting method 

  Flipping a bit costs $1 (one unit of
 computational work) 

  Pay $2 to change a 0 to a 1 
  Use $1 to pay for flipping the bit to 1 
  Leave $1 there to pay when/if the bit gets flipped

 back to 0 
  Since only one bit gets flipped to 1 per

 increment, total cost is $2n = O(n) 
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Accounting method 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 0 
$0 $0 $0 $0 $0 $0 $0 $0 $0 $0 

  Flip A(0) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2) 

A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 1 
$0 $0 $0 $0 $0 $0 $0 $0 $0 $1 



Accounting method 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 0 1 
$0 $0 $0 $0 $0 $0 $0 $0 $0 $1 

  Flip A(0) to 0 and pay with the $1 that was
 there already 

  Flip A(1) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2) 

A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 1 0 
$0 $0 $0 $0 $0 $0 $0 $0 $1 $0 



Accounting method 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 1 0 
$0 $0 $0 $0 $0 $0 $0 $0 $1 $0 

  Flip A(0) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2) 

A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 1 1 
$0 $0 $0 $0 $0 $0 $0 $0 $1 $1 



Accounting method 
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A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 0 1 1 
$0 $0 $0 $0 $0 $0 $0 $0 $1 $1 

  Flip A(0) and A(1) to 0 and pay with the $$
 that were there already 

  Flip A(2) to 1 and pay $1 for flip and leave $1
 with that bit (total fee of $2) 

A(k-1) A(k-2) A(2) A(1) A(0) 

0 0 0 0 0 0 0 1 0 0 
$0 $0 $0 $0 $0 $0 $0 $1 $0 $0 



Accounting method 

  … and so on 
  We “overpay” by $1 for flipping each 0 to 1 
  Use the extra $1 to pay for the cost of flipping

 it back to a zero 
  Because a $2 fee for each increment ensures

 that we have enough money stored to
 complete that increment, amortized cost is
 $2 = O(1) per operation 
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Potential method 

  Record overpayments as “potential
 energy” (or just “potential”) of entire data
 structure 

  Contrast with accounting method where
 overpayments stored with specific parts of
 data structure (e.g., array cells) 
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Potential method 

  Initial data structure is D0 

  Perform operations i = 1, 2, 3, …, n 
  The actual cost of operation i is ci 

  The ith operation yields data structure Di 

  Φ(Di) = potential of Di, or stored overpayment 
  Amortized cost of the ith operation is  

  xi = ci + Φ(Di) - Φ(Di-1)  
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Potential method 

  If Φ(Di) - Φ(Di-1) > 0 then xi is an overcharge
 to ith operation 
  We paid more than the actual cost of the

 operation 

  If Φ(Di) - Φ(Di-1) < 0 then xi is an undercharge
 to the ith operation 
  We paid less than the actual cost of the operation,

 but covered the difference by spending potential 
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Potential method 

  Total amortized cost: 
  Σxi = Σ(ci + Φ(Di) - Φ(Di-1)) = Σci + Φ(Dn) - Φ(D0) 
  Sum of actual costs plus whatever potential we

 added but didn’t use 

  Require that Φ(Di) ≥ 0 so we always “pay in
 advance” 
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Potential method: Binary counter 

  Need to choose potential function Φ(Di) 
  Want to make xi = ci + Φ(Di) - Φ(Di-1) small 
  Usually have to be lucky or clever! 
  Let Φ(Di) = bi, the number of ones in the

 counter after the ith operation 
  Note that Φ(Di) ≥ 0 so we’re OK 
  Recall $1 stored with each 1 in the array when

 using the accounting method 
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Potential method: Binary counter 

  Operation i resets (zeroes) ti bits 
  True cost of operation i is ti + 1  

  The +1 is for setting a single bit to 1 
  Number of ones in counter after ith operation

 is therefore bi = bi-1 – ti + 1 
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Potential method: Binary counter 

  Number of ones in counter after ith operation
 is bi = bi-1 – ti + 1 

  Potential difference is 
  Φ(Di) - Φ(Di-1) = bi – bi-1 = (bi-1–ti+1) – bi-1 = 1 – ti 

  Amortized cost is  
  xi = ci + Φ(Di) - Φ(Di-1) = (ti + 1) + (1 – ti) = 2 
  If we pay just $2 per operation, we always have

 enough potential to cover our actual costs per
 operation 
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Amortized analysis of splay trees 

  Use the accounting method 
  Store $$ with nodes in tree 

  First, some definitions 
  Let nx be the number of nodes in the subtree

 rooted by node x 
  Let rx = floor(log(nx)) 

  Called the rank of x 
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What we’ll show 

  If every node x always has rx credits then
 splay operations require amortized O(lgn)
 time 

  This is called the “credit invariant” 
  For each operation (find, insert, delete) we’ll

 have to show that we can maintain the credit
 invariant and pay for the true cost of the
 operation with O(lgn) $$ per operation 
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First things first 

  Consider a single splay step 
  Single rotation (no grandparent), zig-zig, or zig

-zag 
  Nodes x, y = parent(x), z = parent(y) 
  rx, ry, and rz are ranks before splay step 
  r’x, r’y,and r’z are ranks after splay step 
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For example (zig-zig case) 
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What does a single splay step cost? 

  To pay for rotations (true cost of step) and
 maintain credit invariant 
  3(r’x – rx) + 1 credits suffice for single rotation 
  3(r’x – rx) credits suffice for zig-zig and zig-zag 
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What does a sequence of splay steps
 cost?  
  As node x moves up the tree, sum costs of

 individual steps 
  r’x for one step becomes rx for next step 
  Summing over all steps to the root telescopes

 to become 3(rv – rx) + 1 where v is the root
 node 
  3(r’x – rx) + 3(r’’x – r’x) + 3(r’’’x – r’’x) … + 1 
  Note +1 only required (sometimes) for last step 
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The punch line! 

  3(rv – rx) + 1 = O(logn) 
  v is root node of tree with n nodes 
  rv = floor(logn) 

  We can splay any node to the root in O(logn)
 time 
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Single rotation 
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To maintain credit invariant at all nodes need to add $Δ 
•  Only rx and ry can change 
•  Δ = (r’x – rx) + (r’y – ry) 
•  Note that r’x = ry so … 
•   Δ = r’y – rx 
•  Note that r’x ≥ r’y so … 
•  Δ = r’y – rx ≤ r’x - rx 



Single rotation 
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To maintain credit invariant at all nodes it suffices to pay $(r’x – rx) 
•  Still need to pay O(1) for the rotation 
•  We allocated 3(r’x – rx) + 1 credits 
•  If r’x > rx we’ve still got 2(r’x – rx) > 1 credits to pay for the rotation 
•  The +1 is there in case r’x = rx 

•  When can that happen? 



Zig-zig 

10/6/2008 UMBC CMSC 341 Amortized Analysis 33 

x 

A 

y 

B 

C 

y 

B z 

C D 

rx 

ry 

r’x 

r’y 

To maintain credit invariant at all nodes need to add $Δ 
• Δ = (r’x – rx) + (r’y – ry) + (r’z – rz) 
• Note that r’x = rz so … 
• Δ = r’y + r’z – rx – ry 
• Note that r’x ≥ r’y and r’x ≥ r’z and rx ≤ ry so … 
• Δ = r’y + r’z – rx – ry  ≤ r’x + r’x – rx – rx = 2(r’x – rx) 
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Zig-zig 
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To maintain credit invariant at all nodes it suffices to pay $2(r’x – rx) 
•  Still need to pay O(1) for the rotations 
•  If r’x > rx we can use r’x – rx ≥ 1 credits to pay for the two 

rotations for a total of $3(r’x – rx)  
•  Otherwise, r’x = rx so r’x = rx = ry = rz 

•  Why? 
•  In this case, we can show that maintaining the invariant frees 

one or more credits that can be used to pay for the rotations 
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Zig-zag 

10/6/2008 UMBC CMSC 341 Amortized Analysis 35 

x 

A y 

C B 

y 

C 

z 

A 

•  Analysis analogous to zig-zig step 
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