CMSC 341

Introduction to Trees
Tree ADT

- Tree definition
 - A tree is a set of nodes which may be empty
 - If not empty, then there is a distinguished node r, called root and zero or more non-empty subtrees $T_1, T_2, \ldots T_k$, each of whose roots are connected by a directed edge from r.

- This recursive definition leads to recursive tree algorithms and tree properties being proved by induction.

- Every node in a tree is the root of a subtree.
A Generic Tree
Tree Terminology

- *Root* of a subtree is a child of \(r \). \(r \) is the *parent*.
- All children of a given node are called *siblings*.
- A *leaf* (or external) node has no children.
- An *internal node* is a node with one or more children.
More Tree Terminology

- A path from node \(V_1 \) to node \(V_k \) is a sequence of nodes such that \(V_i \) is the parent of \(V_{i+1} \) for \(1 \leq i \leq k \).
- The length of this path is the number of edges encountered. The length of the path is one less than the number of nodes on the path (\(k - 1 \) in this example).
- The depth of any node in a tree is the length of the path from root to the node.
- All nodes of the same depth are at the same level.
More Tree Terminology (cont.)

- The depth of a tree is the depth of its deepest leaf.
- The height of any node in a tree is the length of the longest path from the node to a leaf.
- The height of a tree is the height of its root.
- If there is a path from V_1 to V_2, then V_1 is an ancestor of V_2 and V_2 is a descendent of V_1.
A Unix directory tree
Tree Storage

- A tree node contains:
 - Data Element
 - Links to other nodes
- Any tree can be represented with the “first-child, next-sibling” implementation.

```java
class TreeNode {
    Object element;
    TreeNode firstChild;
    TreeNode nextSibling;
}
```
Printing a Child/Sibling Tree

// depth equals the number of tabs to indent name
private void listAll(int depth) {
 printName(depth); // Print the name of the object
 if(isDirectory())
 for each file c in this directory (for each child)
 c.listAll(depth + 1);
}

public void listAll()
{
 listAll(0);
}

What is the output when listAll() is used for the Unix directory tree?
K-ary Tree

- If we know the maximum number of children each node will have, K, we can use an array of children references in each node.

```java
class KTreeNode {
    Object element;
    KTreeNode children[ K ];
}
```
Pseudocode for Printing a K-ary Tree

// depth equals the number of tabs to indent name
private void listAll(int depth)
{
 printElement(depth); // Print the value of the object
 if(children != null)
 for each child c in children array
 c.listAll(depth + 1);
}

public void listAll()
{
 listAll(0);
}
Binary Trees

- A special case of K-ary tree is a tree whose nodes have exactly two children pointers -- binary trees.

- A *binary tree* is a rooted tree in which no node can have more than two children AND the children are distinguished as *left* and *right*.
The Binary Node Class

private static class BinaryNode<AnyType>
{
 // Constructors
 BinaryNode(AnyType theElement)
 {
 this(theElement, null, null);
 }

 BinaryNode(AnyType theElement, BinaryNode<AnyType> lt,
 BinaryNode<AnyType> rt)
 {
 element = theElement; left = lt; right = rt;
 }

 AnyType element; // The data in the node
 BinaryNode<AnyType> left; // Left child
 BinaryNode<AnyType> right; // Right child
}
A full Binary Tree is a Binary Tree in which every node either has two children or is a leaf (every interior node has two children).
FBT Theorem

- Theorem: A FBT with \(n \) internal nodes has \(n + 1 \) leaf nodes.
- Proof by strong induction on the number of internal nodes, \(n \):
 - Base case:
 - Binary Tree of one node (the root) has:
 - zero internal nodes
 - one external node (the root)
 - Inductive Assumption:
 - Assume all FBTs with up to and including \(n \) internal nodes have \(n + 1 \) external nodes.
FBT Proof (cont’d)

- Inductive Step - prove true for a tree with \(n + 1 \) internal nodes (i.e. a tree with \(n + 1 \) internal nodes has \((n + 1) + 1 = n + 2 \) leaves)
 - Let \(T \) be a FBT of \(n \) internal nodes.
 - It therefore has \(n + 1 \) external nodes. (Inductive Assumption)
 - Enlarge \(T \) so it has \(n+1 \) internal nodes by adding two nodes to some leaf. These new nodes are therefore leaf nodes.
 - Number of leaf nodes increases by 2, but the former leaf becomes internal.
 - So,
 - \# internal nodes becomes \(n + 1 \),
 - \# leaves becomes \((n + 1) + 1 = n + 2 \)
Perfect Binary Tree

- A *Perfect Binary Tree* is a full Binary Tree in which all leaves have the same depth.
PBT Theorem

- **Theorem:** The number of nodes in a PBT is $2^{h+1}-1$, where h is height.

- Proof by strong induction on h, the height of the PBT:
 - Notice that the number of nodes at each level is 2^l.
 (Proof of this is a simple induction - left to student as exercise). Recall that the height of the root is 0.
 - **Base Case:**
 The tree has one node; then $h = 0$ and $n = 1$ and $2^{(h+1)} = 2^{(0+1)} - 1 = 2^1 - 1 = 2 - 1 = 1 = n$.
 - **Inductive Assumption:** Assume true for all PBTs with height $h \leq H$.
Proof of PBT Theorem (cont)

- Prove true for PBT with height H+1:
 - Consider a PBT with height H + 1. It consists of a root and two subtrees of height H. Therefore, since the theorem is true for the subtrees (by the inductive assumption since they have height = H)
 - $(2^{(H+1)} - 1)$ for the left subtree
 - $(2^{(H+1)} - 1)$ for the right subtree
 - 1 for the root
 - Thus, $n = 2 \times (2^{(H+1)} - 1) + 1$
 - $= 2^{((H+1)+1)} - 2 + 1 = 2^{((H+1)+1)} - 1$
Complete Binary Trees

- Complete Binary Tree
- A *complete Binary Tree* is a perfect Binary Tree except that the lowest level may not be full. If not, it is filled from left to right.
Tree Traversals

- Inorder
- Preorder
- Postorder
- Levelorder
Constructing Trees

Is it possible to reconstruct a Binary Tree from just one of its pre-order, inorder, or post-order sequences?
Constructing Trees (cont)

- Given two sequences (say pre-order and inorder) is the tree unique?
How do we find something in a Binary Tree?

- We must recursively search the entire tree. Return a reference to node containing x, return NULL if x is not found

```java
BinaryNode<AnyType> find( Object x) {
    BinaryNode<AnyType> t = null; // found it here
    if ( element.equals(x) ) return element;

    // not here, look in the left subtree
    if(left != null)
        t = left.find(x);

    // if not in the left subtree, look in the right subtree
    if ( t == null)
        t = right.find(x);

    // return pointer, NULL if not found
    return t;
}
```
Binary Trees and Recursion

- A Binary Tree can have many properties
 - Number of leaves
 - Number of interior nodes
 - Is it a full binary tree?
 - Is it a perfect binary tree?
 - Height of the tree

- Each of these properties can be determined using a recursive function.
Recursive Binary Tree Function

return-type function (BinaryNode<AnyType> t) {
 // base case – usually empty tree
 if (t == null) return xxxx;

 // determine if the node pointed to by t has the property

 // traverse down the tree by recursively “asking” left/right children
 // if their subtree has the property

 return theResult;
}
boolean isFBT (BinaryNode<AnyType> t) {
 // base case – an empty tree is a FBT
 if (t == null) return true;

 // determine if this node is “full”
 // if just one child, return – the tree is not full
 if ((t.left && !t.right) || (t.right && !t.left))
 return false;

 // if this node is full, “ask” its subtrees if they are full
 // if both are FBTs, then the entire tree is an FBT
 // if either of the subtrees is not FBT, then the tree is not
 return isFBT(t.right) && isFBT(t.left);
}
Other Recursive Binary Tree Functions

- Count number of interior nodes
  ```
  int countInteriorNodes(BinaryNode<AnyType> t);
  ```

- Determine the height of a binary tree. By convention (and for ease of coding) the height of an empty tree is -1
  ```
  int height(BinaryNode<AnyType> t);
  ```

- Many others
Other Binary Tree Operations

- How do we insert a new element into a binary tree?
- How do we remove an element from a binary tree?