Red-Black Trees

Definitions and Bottom-Up Insertion
Red-Black Trees

- Definition: A red-black tree is a binary search tree in which:
 - Every node is colored either Red or Black.
 - Each NULL pointer is considered to be a Black “node”.
 - If a node is Red, then both of its children are Black.
 - Every path from a node to a NULL contains the same number of Black nodes.
 - By convention, the root is Black

- Definition: The black-height of a node, X, in a red-black tree is the number of Black nodes on any path to a NULL, not counting X.
A Red-Black Tree with NULLs shown

Black-Height of the tree (the root) = 3
Black-Height of node “X” = 2
A Red-Black Tree with
Black-Height = 3
Black Height of the tree?
Black Height of X?
Theorem 1 – Any red-black tree with root \(x \), has \(n \geq 2^{bh(x)} - 1 \) nodes, where \(bh(x) \) is the black height of node \(x \).

Proof: by induction on height of \(x \).
Theorem 2 – In a red-black tree, at least half the nodes on any path from the root to a NULL must be Black.

Proof – If there is a Red node on the path, there must be a corresponding Black node.

Algebraically this theorem means

\[bh(x) \geq h/2 \]
Theorem 3 – In a red-black tree, no path from any node, X, to a NULL is more than twice as long as any other path from X to any other NULL.

Proof: By definition, every path from a node to any NULL contains the same number of Black nodes. By Theorem 2, a least $\frac{1}{2}$ the nodes on any such path are Black. Therefore, there can no more than twice as many nodes on any path from X to a NULL as on any other path. Therefore the length of every path is no more than twice as long as any other path.
Theorem 4 –

A red-black tree with \(n \) nodes has height \(h \leq 2 \log(n + 1) \).

Proof: Let \(h \) be the height of the red-black tree with root \(x \). By Theorem 2,
\[
bh(x) \geq h/2
\]
From Theorem 1,
\[
n \geq 2^{bh(x)} - 1
\]
Therefore \(n \geq 2^{h/2} - 1 \)
\[
n + 1 \geq 2^{h/2}
\]
\[
\log(n + 1) \geq h/2
\]
\[
2\log(n + 1) \geq h
\]
Bottom –Up Insertion

- Insert node as usual in BST
- Color the node Red
- What Red-Black property may be violated?
 - Every node is Red or Black?
 - NULLs are Black?
 - If node is Red, both children must be Black?
 - Every path from node to descendant NULL must contain the same number of Blacks?
Bottom Up Insertion

- Insert node; Color it Red; X is pointer to it
- Cases
 0: X is the root -- color it Black
 1: Both parent and uncle are Red -- color parent and uncle Black, color grandparent Red. Point X to grandparent and check new situation.
 2 (zig-zag): Parent is Red, but uncle is Black. X and its parent are opposite type children -- color grandparent Red, color X Black, rotate left(right) on parent, rotate right(left) on grandparent
 3 (zig-zig): Parent is Red, but uncle is Black. X and its parent are both left (right) children -- color parent Black, color grandparent Red, rotate right(left) on grandparent
Case 1 – U is Red

Just Recolor and move up
Case 2 – Zig-Zag

Double Rotate
 X around P; X around G

Recolor G and X
Case 3 – Zig-Zig

Single Rotate P around G

Recolor P and G
Asymptotic Cost of Insertion

- $O(\lg n)$ to descend to insertion point
- $O(1)$ to do insertion
- $O(\lg n)$ to ascend and readjust == worst case only for case 1

Total: $O(\log n)$
Top-Down Insertion

An alternative to this “bottom-up” insertion is “top-down” insertion.

Top-down is iterative. It moves down the tree, “fixing” things as it goes.

What is the objective of top-down’s “fixes”?
Insert 4 into this R-B Tree
Insertion Practice

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty Red-Black Tree